Identifying Mis-Configured Author Profiles on Google Scholar Using Deep Learning

被引:3
|
作者
Tang, Jiaxin [1 ,2 ]
Chen, Yang [1 ,2 ]
She, Guozhen [1 ,2 ]
Xu, Yang [1 ]
Sha, Kewei [3 ]
Wang, Xin [1 ,2 ]
Wang, Yi [4 ,5 ]
Zhang, Zhenhua [6 ]
Hui, Pan [7 ,8 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
[3] Univ Houston Clear Lake, Dept Comp Sci, Houston, TX 77058 USA
[4] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Inst Future Networks, Shenzhen 518055, Peoples R China
[6] Meituan, Beijing 100102, Peoples R China
[7] Univ Helsinki, Dept Comp Sci, Helsinki 00014, Finland
[8] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 15期
基金
中国国家自然科学基金;
关键词
Google Scholar; author profiles; mis-configuration; machine learning; neural network; node embedding; NETWORKS; DEFENSE; INDEX;
D O I
10.3390/app11156912
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Google Scholar has been a widely used platform for academic performance evaluation and citation analysis. The issue about the mis-configuration of author profiles may seriously damage the reliability of the data, and thus affect the accuracy of analysis. Therefore, it is important to detect the mis-configured author profiles. Dealing with this issue is challenging because the scale of the dataset is large and manual annotation is time-consuming and relatively subjective. In this paper, we first collect a dataset of Google Scholar's author profiles in the field of computer science and compare the mis-configured author profiles with the reliable ones. Then, we propose an integrated model that utilizes machine learning and node embedding to automatically detect mis-configured author profiles. Additionally, we conduct two application case studies based on the data of Google Scholar, i.e., outstanding scholar searching and university ranking, to demonstrate how the improved dataset after filtering out the mis-configured author profiles will change the results. The two case studies validate the importance and meaningfulness of the detection of mis-configured author profiles.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Developing an Open-Source Bibliometric Ranking Website Using Google Scholar Citation Profiles for Researchers in the Field of Biomedical Informatics
    Sittig, Dean F.
    McCoy, Allison B.
    Wright, Adam
    Lin, Jimmy
    MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 : 1004 - 1004
  • [32] Mapping agricultural plastic greenhouses using Google Earth images and deep learning
    Chen, Wei
    Xu, Yameng
    Zhang, Zhe
    Yang, Lan
    Pan, Xubin
    Jia, Zhe
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191 (191)
  • [33] Identifying Cognitive Profiles in Blended Learning using the Multiple Intelligences Theory
    Viana, Lucas
    Castro, Thais
    Gadelha, Bruno
    2019 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE 2019), 2019,
  • [34] Identifying User Behavior Profiles in Ethereum Using Machine Learning Techniques
    Valadares, Julia Almeida
    Oliveira, Vinicius C.
    de Azevedo Sousa, Jose Eduardo
    Bernardino, Heder S.
    Villela, Saulo Moraes
    Vieira, Alex Borges
    Goncalves, Glauber
    2021 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN (BLOCKCHAIN 2021), 2021, : 327 - 332
  • [35] Identifying Periampullary Regions in MRI Images Using Deep Learning
    Tang, Yong
    Zheng, Yingjun
    Chen, Xinpei
    Wang, Weijia
    Guo, Qingxi
    Shu, Jian
    Wu, Jiali
    Su, Song
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [36] Identifying crop water stress using deep learning models
    Narendra Singh Chandel
    Subir Kumar Chakraborty
    Yogesh Anand Rajwade
    Kumkum Dubey
    Mukesh K. Tiwari
    Dilip Jat
    Neural Computing and Applications, 2021, 33 : 5353 - 5367
  • [37] Identifying crop water stress using deep learning models
    Chandel, Narendra Singh
    Chakraborty, Subir Kumar
    Rajwade, Yogesh Anand
    Dubey, Kumkum
    Tiwari, Mukesh K.
    Jat, Dilip
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10): : 5353 - 5367
  • [38] Identifying facial phenotypes of genetic disorders using deep learning
    Gurovich, Yaron
    Hanani, Yair
    Bar, Omri
    Nadav, Guy
    Fleischer, Nicole
    Gelbman, Dekel
    Basel-Salmon, Lina
    Krawitz, Peter M.
    Kamphausen, Susanne B.
    Zenker, Martin
    Bird, Lynne M.
    Gripp, Karen W.
    NATURE MEDICINE, 2019, 25 (01) : 60 - +
  • [39] Identifying keystone species in microbial communities using deep learning
    Xu-Wen Wang
    Zheng Sun
    Huijue Jia
    Sebastian Michel-Mata
    Marco Tulio Angulo
    Lei Dai
    Xuesong He
    Scott T. Weiss
    Yang-Yu Liu
    Nature Ecology & Evolution, 2024, 8 : 22 - 31
  • [40] Identifying facial phenotypes of genetic disorders using deep learning
    Yaron Gurovich
    Yair Hanani
    Omri Bar
    Guy Nadav
    Nicole Fleischer
    Dekel Gelbman
    Lina Basel-Salmon
    Peter M. Krawitz
    Susanne B. Kamphausen
    Martin Zenker
    Lynne M. Bird
    Karen W. Gripp
    Nature Medicine, 2019, 25 : 60 - 64