Detecting Structural Changes in Longitudinal Network Data

被引:4
|
作者
Park, Jong Hee [1 ]
Sohn, Yunkyu [2 ]
机构
[1] Seoul Natl Univ, Dept Polit Sci & Int Relat, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Waseda Univ, Sch Polit Sci & Econ, Shinjuku Ku, 1-6-1 Nishiwaseda, Tokyo 1698050, Japan
来源
BAYESIAN ANALYSIS | 2020年 / 15卷 / 01期
基金
新加坡国家研究基金会;
关键词
network latent space; hidden Markov model; WAIC; military alliance; COMMUNITY STRUCTURE; LIKELIHOOD; MODELS;
D O I
10.1214/19-BA1147
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dynamic modeling of longitudinal networks has been an increasingly important topic in applied research. While longitudinal network data commonly exhibit dramatic changes in its structures, existing methods have largely focused on modeling smooth topological changes over time. In this paper, we develop a hidden Markov network change-point model (HNC) that combines the multi-linear tensor regression model (Hoff, 2011) with a hidden Markov model using Bayesian inference. We model changes in network structure as shifts in discrete states yielding particular sets of network generating parameters. Our simulation results demonstrate that the proposed method correctly detects the number, locations, and types of changes in latent node characteristics. We apply the proposed method to international military alliance networks to find structural changes in the coalition structure among nations.
引用
收藏
页码:133 / 157
页数:25
相关论文
共 50 条
  • [41] Longitudinal Network Centrality Using Incomplete Data
    Steinert-Threlkeld, Zachary C.
    [J]. POLITICAL ANALYSIS, 2017, 25 (03) : 308 - 328
  • [42] NETWORK META-ANALYSIS OF LONGITUDINAL DATA
    Vieira, M. C.
    Cope, S.
    Jansen, J. P.
    [J]. VALUE IN HEALTH, 2013, 16 (03) : A15 - A15
  • [43] Detecting False Information of Social Network in Big Data
    Xu, Yi
    Li, Furong
    Liu, Jianyi
    Zhang, Ru
    Yao, Yuangang
    Zhang, Dongfang
    [J]. COLLABORATE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2016, 2017, 201 : 642 - 651
  • [44] Detecting Computer Network Anomaly with Data Mining Technology
    Hu Zhiyu
    Li Li
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS RESEARCH AND MECHATRONICS ENGINEERING, 2015, 121 : 1900 - 1903
  • [45] Longitudinal changes in structural cortical networks in early PPMS
    Tur, C.
    Eshaghi, A.
    Khaleeli, Z.
    Altmann, D. R.
    Prados, F.
    Charalambous, T.
    Clayden, J. D.
    Ourselin, S.
    Wheeler-Kingshott, C. A. M. Gandini
    Miller, D. H.
    Thompson, A. J.
    Toosy, A. T.
    Ciccarelli, O.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2016, 22 : 536 - 537
  • [46] Detecting Social Anxiety with Online Social Network Data
    Chang, Ming-Yi
    Tseng, Chih-Ying
    [J]. 2020 21ST IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2020), 2020, : 333 - 336
  • [47] Detecting Hidden User Behavior for Network Data Stream
    Zhou, Aiping
    Liu, Lijun
    Zhu, Huisheng
    Li, Jinhai
    Zhu, Chengang
    [J]. 2018 IEEE 18TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT), 2018, : 875 - 879
  • [48] Longitudinal changes of structural connectivity in traumatic axonal injury
    Wang, J. Y.
    Bakhadirov, K.
    Abdi, H.
    Devous, M. D., Sr.
    de la Plata, C. D. Marquez
    Moore, C.
    Madden, C. J.
    Diaz-Arrastia, R.
    [J]. NEUROLOGY, 2011, 77 (09) : 818 - 826
  • [49] Detecting Changes in Student Behavior from Clickstream Data
    Park, Jihyun
    Denaro, Kameryn
    Rodriguez, Fernando
    Smyth, Padhraic
    Warschauer, Mark
    [J]. SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17), 2017, : 21 - 30
  • [50] Detecting the process changes for multivariate nonlinear profile data
    Pan, Jeh-Nan
    Li, Chung-I
    Lu, Meng Zhe
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (06) : 1890 - 1910