Detecting Structural Changes in Longitudinal Network Data

被引:4
|
作者
Park, Jong Hee [1 ]
Sohn, Yunkyu [2 ]
机构
[1] Seoul Natl Univ, Dept Polit Sci & Int Relat, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Waseda Univ, Sch Polit Sci & Econ, Shinjuku Ku, 1-6-1 Nishiwaseda, Tokyo 1698050, Japan
来源
BAYESIAN ANALYSIS | 2020年 / 15卷 / 01期
基金
新加坡国家研究基金会;
关键词
network latent space; hidden Markov model; WAIC; military alliance; COMMUNITY STRUCTURE; LIKELIHOOD; MODELS;
D O I
10.1214/19-BA1147
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dynamic modeling of longitudinal networks has been an increasingly important topic in applied research. While longitudinal network data commonly exhibit dramatic changes in its structures, existing methods have largely focused on modeling smooth topological changes over time. In this paper, we develop a hidden Markov network change-point model (HNC) that combines the multi-linear tensor regression model (Hoff, 2011) with a hidden Markov model using Bayesian inference. We model changes in network structure as shifts in discrete states yielding particular sets of network generating parameters. Our simulation results demonstrate that the proposed method correctly detects the number, locations, and types of changes in latent node characteristics. We apply the proposed method to international military alliance networks to find structural changes in the coalition structure among nations.
引用
收藏
页码:133 / 157
页数:25
相关论文
共 50 条
  • [1] DETECTING STRUCTURAL CHANGES IN DEPENDENT DATA
    Ding, Jie
    Xiang, Yu
    Shen, Lu
    Tarokh, Vahid
    [J]. 2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 750 - 754
  • [2] Detecting Fast Progressors: Comparing a Bayesian Longitudinal Model to Linear Regression for Detecting Structural Changes in Glaucoma
    Besharati, Sajad
    Su, Erica
    Mohammadzadeh, Vahid
    Mohammadi, Massood
    Caprioli, Joseph
    Weiss, Robert e.
    Nouri-mahdavi, Kouros
    [J]. AMERICAN JOURNAL OF OPHTHALMOLOGY, 2024, 261 : 85 - 94
  • [3] A longitudinal study of structural brain network changes with normal aging
    Wu, Kai
    Taki, Yasuyuki
    Sato, Kazunori
    Qi, Haochen
    Kawashima, Ryuta
    Fukuda, Hiroshi
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2013, 7
  • [4] Detecting structural changes with ARMA processes
    Ostermann, A.
    Spielberger, G.
    Tributsch, A.
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2016, 22 (06) : 524 - 538
  • [5] Detecting structural changes using wavelets
    Yazgan, M. Ege
    Ozkan, Harun
    [J]. FINANCE RESEARCH LETTERS, 2015, 12 : 23 - 37
  • [6] Detecting structural changes in large portfolios
    Posch, Peter N.
    Ullmann, Daniel
    Wied, Dominik
    [J]. EMPIRICAL ECONOMICS, 2019, 56 (04) : 1341 - 1357
  • [7] Detecting structural changes in large portfolios
    Peter N. Posch
    Daniel Ullmann
    Dominik Wied
    [J]. Empirical Economics, 2019, 56 : 1341 - 1357
  • [8] Extracting Network-Wide Correlated Changes from Longitudinal Configuration Data
    Sung, Yu-Wei Eric
    Rao, Sanjay
    Sen, Subhabrata
    Leggett, Stephen
    [J]. PASSIVE AND ACTIVE NETWORK MEASUREMENT, PROCEEDINGS, 2009, 5448 : 111 - +
  • [9] Detecting Communities through Network Data
    Bruggeman, Jeroen
    Traag, V. A.
    Uitermark, Justus
    [J]. AMERICAN SOCIOLOGICAL REVIEW, 2012, 77 (06) : 1050 - 1063
  • [10] Detecting correlation changes in electrophysiological data
    Wu, Jianhua
    Kendrick, Keith
    Feng, Jianfeng
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2007, 161 (01) : 155 - 165