Complete synchronization of Kuramoto oscillators with finite inertia

被引:106
|
作者
Choi, Young-Pit [1 ]
Ha, Seung-Yeal [1 ]
Yun, Seok-Bae [2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
关键词
Kuramoto model; Inertia effects; Phase; Frequency; Complete synchronization; COUPLED OSCILLATORS; MODEL; POPULATIONS; STABILITY; ARRAYS;
D O I
10.1016/j.physd.2010.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an approach based on Gronwall's inequalities for the asymptotic complete phase-frequency synchronization of Kuramoto oscillators with finite inertia. For given finite inertia and coupling strength, we present admissible classes of initial configurations and natural frequency distributions, which lead to the complete phase-frequency synchronization asymptotically. For this, we explicitly identify invariant regions for the Kuramoto flow, and derive second-order Gronwall's inequalities for the evolution of phase and frequency diameters. Our detailed time-decay estimates for phase and frequency diameters are independent of the number of oscillators. We also compare our analytical results with numerical simulations. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:32 / 44
页数:13
相关论文
共 50 条
  • [31] Synchrony-optimized networks of Kuramoto oscillators with inertia
    Pinto, Rafael S.
    Saa, Alberto
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 463 : 77 - 87
  • [32] Synchronization of Kuramoto oscillators in random complex networks
    Li, Ping
    Yi, Zhang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (07) : 1669 - 1674
  • [33] COMPLETE SYNCHRONIZATION FOR A SECOND-ORDER KURAMOTO TYPE MODEL OF IDENTICAL OSCILLATORS IN A SWITCHING NETWORK
    Jin, Chunyin
    Wu, Yang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [34] On the complete synchronization of the Kuramoto phase model
    Ha, Seung-Yeal
    Ha, Taeyoung
    Kim, Jong-Ho
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (17) : 1692 - 1700
  • [35] Synchronization in a system of Kuramoto oscillators with distributed Gaussian noise
    Campa, Alessandro
    Gupta, Shamik
    PHYSICAL REVIEW E, 2023, 108 (06)
  • [36] Synchronization of Heterogeneous Kuramoto Oscillators with Graphs of Diameter Two
    Gushchin, Andrey
    Mallada, Enrique
    Tang, Ao
    2015 49TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2015,
  • [37] SYNCHRONIZATION OF DISCRETE TIME KURAMOTO OSCILLATORS WITH DELAYED STATES
    Zhang, Hua
    Xiao, Sisi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (05): : 2399 - 2418
  • [38] Single-clustering synchronization in a ring of Kuramoto oscillators
    Huang, Xia
    Zhan, Meng
    Li, Fan
    Zheng, Zhigang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (12)
  • [39] SYNCHRONIZATION OF KURAMOTO OSCILLATORS WITH DISTANCE-DEPENDENT DELAY
    Trojanowski, Karol
    Longa, Lech
    ACTA PHYSICA POLONICA B, 2013, 44 (05): : 991 - 995
  • [40] Conditions for global synchronization in networks of heterogeneous Kuramoto oscillators
    Mercado-Uribe, Angel
    Mendoza-Avila, Jesus
    Efimov, Denis
    Schiffer, Johannes
    AUTOMATICA, 2025, 175