Predicting Auditory Spatial Attention from EEG using Single- and Multi-task Convolutional Neural Networks

被引:0
|
作者
Liu, Zhentao [1 ]
Mock, Jeffrey [2 ]
Huang, Yufei [1 ]
Golob, Edward [2 ]
机构
[1] Univ Texas San Antonio, Dept Elect & Comp Engn, San Antonio, TX 78249 USA
[2] Univ Texas San Antonio, Dept Psychol, San Antonio, TX 78249 USA
关键词
spatial attention; auditory; convolutional neural network; multi-task learning;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Recent behavioral and electroencephalography (EEG) studies have defined ways that auditory spatial attention can be allocated over large regions of space. As with most experimental studies, behavior and EEG were averaged over lOs of minutes because identifying abstract feature spatial codes from raw EEG data is extremely challenging. The goal of this study is to design a deep learning model that can learn from raw EEG data and predict auditory spatial information on a trial-by-trial basis. We designed a convolutional neural network (CNN) model to predict the attended location or other stimulus locations relative to the attended location. A multi-task model was also used to predict the attended and stimulus locations at the same time. Based on the visualization of our models, we investigated features of individual classification tasks and joint feature of the multi-task model. Our model achieved an average 72.4% in relative location prediction and 90.0% in attended location prediction individually (ALTROC's). The multi-task model improved the performance of attended location prediction by 3%. Our results show that deep learning methods are able to define abstract neural codes in EEG thought to neural mechanisms of human spatial cognition and attention.
引用
收藏
页码:1298 / 1303
页数:6
相关论文
共 50 条
  • [31] Multi-Task Learning for Food Identification and Analysis with Deep Convolutional Neural Networks
    Zhang, Xi-Jin
    Lu, Yi-Fan
    Zhang, Song-Hai
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2016, 31 (03) : 489 - 500
  • [32] Face Detection Based on Improved Multi-task Cascaded Convolutional Neural Networks
    Jia, Siyu
    Tian, Ying
    IAENG International Journal of Computer Science, 2024, 51 (02) : 67 - 74
  • [33] Multi-Task Learning for Food Identification and Analysis with Deep Convolutional Neural Networks
    Xi-Jin Zhang
    Yi-Fan Lu
    Song-Hai Zhang
    Journal of Computer Science and Technology, 2016, 31 : 489 - 500
  • [34] Traffic Sign Recognition Using a Multi-Task Convolutional Neural Network
    Luo, Hengliang
    Yang, Yi
    Tong, Bei
    Wu, Fuchao
    Fan, Bin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (04) : 1100 - 1111
  • [35] Face Attribute Estimation Using Multi-Task Convolutional Neural Network
    Kawai, Hiroyarr
    Ito, Koichi
    Aoki, Takafumi
    JOURNAL OF IMAGING, 2022, 8 (04)
  • [36] DeepSplit: Segmentation of Microscopy Images Using Multi-task Convolutional Networks
    Torr, Andrew
    Basaran, Doga
    Sero, Julia
    Rittscher, Jens
    Sailem, Heba
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, 2020, 1248 : 155 - 167
  • [37] Ensemble of multi-task deep convolutional neural networks using transfer learning for fruit freshness classification
    Kang, Jaeyong
    Gwak, Jeonghwan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (16) : 22355 - 22377
  • [38] MACHINE LEARNING USING A MULTI-TASK CONVOLUTIONAL NEURAL NETWORKS CAN ACCURATELY ASSESS ROBOTIC SKILLS
    Gahan, Jeffrey
    Steinberg, Ryan
    Garbens, Alaina
    Qu, Xingming
    Larson, Eric
    JOURNAL OF UROLOGY, 2020, 203 : E505 - E505
  • [39] Ensemble of multi-task deep convolutional neural networks using transfer learning for fruit freshness classification
    Jaeyong Kang
    Jeonghwan Gwak
    Multimedia Tools and Applications, 2022, 81 : 22355 - 22377
  • [40] Rolling bearing fault diagnosis with multi-scale multi-task attention convolutional neural network
    Wang, Zhaowei
    Liu, Chuanshuai
    Zhao, Wenxiang
    Song, Xiangjin
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2024, 28 (07): : 65 - 76