Multi-graph fusion for multi-view spectral clustering

被引:189
|
作者
Kang, Zhao [1 ]
Shi, Guoxin [1 ]
Huang, Shudong [1 ]
Chen, Wenyu [1 ]
Pu, Xiaorong [1 ]
Zhou, Joey Tianyi [2 ]
Xu, Zenglin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R China
[2] ASTAR, Inst High Performance Comp, Singapore, Singapore
关键词
Multi-view learning; Spectral clustering; Graph fusion; ALGORITHM;
D O I
10.1016/j.knosys.2019.105102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A panoply of multi-view clustering algorithms has been developed to deal with prevalent multi-view data. Among them, spectral clustering-based methods have drawn much attention and demonstrated promising results recently. Despite progress, there are still two fundamental questions that stay unanswered to date. First, how to fuse different views into one graph. More often than not, the similarities between samples may be manifested differently by different views. Many existing algorithms either simply take the average of multiple views or just learn a common graph. These simple approaches fail to consider the flexible local manifold structures of all views. Hence, the rich heterogeneous information is not fully exploited. Second, how to learn the explicit cluster structure. Most existing methods do not pay attention to the quality of the graphs and perform graph learning and spectral clustering separately. Those unreliable graphs might lead to suboptimal clustering results. To fill these gaps, in this paper, we propose a novel multi-view spectral clustering model which performs graph fusion and spectral clustering simultaneously. The fusion graph approximates the original graph of each individual view but maintains an explicit cluster structure. Experiments on four widely used data sets confirm the superiority of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Learnable Graph Filter for Multi-view Clustering
    Zhou, Peng
    Du, Liang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3089 - 3098
  • [42] Essential multi-view graph learning for clustering
    Shuangxun Ma
    Qinghai Zheng
    Yuehu Liu
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 5225 - 5236
  • [43] Scalable multi-view clustering with graph filtering
    Liang Liu
    Peng Chen
    Guangchun Luo
    Zhao Kang
    Yonggang Luo
    Sanchu Han
    Neural Computing and Applications, 2022, 34 : 16213 - 16221
  • [44] Essential multi-view graph learning for clustering
    Ma, Shuangxun
    Zheng, Qinghai
    Liu, Yuehu
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 13 (11) : 5225 - 5236
  • [45] Multi-view projected clustering with graph learning
    Gao, Quanxue
    Wan, Zhizhen
    Liang, Ying
    Wang, Qianqian
    Liu, Yang
    Shao, Ling
    NEURAL NETWORKS, 2020, 126 (126) : 335 - 346
  • [46] Consensus Graph Learning for Multi-View Clustering
    Li, Zhenglai
    Tang, Chang
    Liu, Xinwang
    Zheng, Xiao
    Zhang, Wei
    Zhu, En
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2461 - 2472
  • [47] Robust Graph Learning for Multi-view Clustering
    Huang, Yixuan
    Xiao, Qingjiang
    Du, Shiqiang
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7331 - 7336
  • [48] Effective and Adaptive Refined Multi-metric Similarity Graph Fusion for Multi-view Clustering
    Rong, Wentao
    Zhuo, Enhong
    Tao, Guihua
    Cai, Hongmin
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT II, 2021, 12713 : 194 - 206
  • [49] Graph Contrastive Partial Multi-View Clustering
    Wang, Yiming
    Chang, Dongxia
    Fu, Zhiqiang
    Wen, Jie
    Zhao, Yao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 (6551-6562) : 6551 - 6562
  • [50] Discrete Multi-Graph Clustering
    Luo, Minnan
    Yan, Caixia
    Zheng, Qinghua
    Chang, Xiaojun
    Chen, Ling
    Nie, Feiping
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (09) : 4701 - 4712