Generalized Riemann-Liouville k-Fractional Integrals Associated With Ostrowski Type Inequalities and Error Bounds of Hadamard Inequalities

被引:103
|
作者
Kwun, Young Chel [1 ]
Farid, Ghulum [2 ]
Nazeer, Waqas [3 ]
Ullah, Sami [4 ]
Kang, Shin Min [5 ,6 ,7 ]
机构
[1] Dong A Univ, Dept Math, Busan 49315, South Korea
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock 43600, Pakistan
[3] Univ Educ, Div Sci & Technol, Lahore 54000, Pakistan
[4] Air Univ, Dept Math, Islamabad 44000, Pakistan
[5] Gyeongsang Natl Univ, Dept Math, Jinju 52828, South Korea
[6] Gyeongsang Natl Univ, RINS, Jinju 52828, South Korea
[7] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
来源
IEEE ACCESS | 2018年 / 6卷
关键词
Fractional inequalities; Hadamard inequality; Ostrowski inequality; Riemann-Liouville fractional integrals; Generalized fractional integrals; M-CONVEX FUNCTIONS;
D O I
10.1109/ACCESS.2018.2878266
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ostrowski inequality provides the estimation of a function to its integral mean. It is useful in error estimations of quadrature rules in numerical analysis. The objective of this paper is to define a more general form of Riemann-Liouville k-fractional integrals with respect to an increasing function, which are used to obtain fractional integral inequalities of Ostrowski type. A simple and straightforward approach is followed to establish these inequalities. The applications of established results are also briefly discussed and succeeded to get bounds of some fractional Hadamard inequalities.
引用
收藏
页码:64946 / 64953
页数:8
相关论文
共 50 条
  • [41] Hermite-Hadamard Type Riemann-Liouville Fractional Integral Inequalities for Convex Functions
    Tomar, Muharrem
    Set, Erhan
    Sarikaya, M. Zeki
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [42] THE LEFT RIEMANN-LIOUVILLE FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Kunt, Mehmet
    Karapinar, Dunya
    Turhan, Sercan
    Iscan, Imdat
    [J]. MATHEMATICA SLOVACA, 2019, 69 (04) : 773 - 784
  • [43] SOME HERMITE-HADAMARD TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, Marcela V.
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (04): : 411 - 416
  • [44] HERMITE-HADAMARD TYPE INEQUALITIES OBTAINED VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, M. V.
    Mitroi, F-C.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2014, 83 (02): : 209 - 215
  • [45] The Hermite-Hadamard-Jensen-Mercer Type Inequalities for Riemann-Liouville Fractional Integral
    Wang, Hua
    Khan, Jamroz
    Adil Khan, Muhammad
    Khalid, Sadia
    Khan, Rewayat
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [46] CHEBYSHEV TYPE INTEGRAL INEQUALITIES FOR GENERALIZED k-FRACTIONAL CONFORMABLE INTEGRALS
    Habib, Siddra
    Mubeen, Shahid
    Naeem, Muhammad Nawaz
    [J]. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (04): : 53 - 65
  • [47] Generalized k-fractional conformable integrals and related inequalities
    Qi, Feng
    Habib, Siddra
    Mubeen, Shahid
    Naeem, Muhammad Nawaz
    [J]. AIMS MATHEMATICS, 2019, 4 (03): : 343 - 358
  • [48] GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1527 - 1538
  • [49] Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α,m)-preinvex functions
    Du, TingSong
    Liao, JiaGen
    Chen, LianZi
    Awan, Muhammad Uzair
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [50] On Hermite-Hadamard Type Inequalities for s-Convex Functions on the Coordinates via Riemann-Liouville Fractional Integrals
    Chen, Feixiang
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,