A brief analysis of self-gravitating polytropic models with a non-zero cosmological constant

被引:16
|
作者
Merafina, M. [1 ]
Bisnovatyi-Kogan, G. S. [2 ]
Tarasov, S. O. [3 ]
机构
[1] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
[2] Space Res Inst IKI, Moscow 117997, Russia
[3] Natl Res Nucl Univ MEPHI, Moscow 115409, Russia
关键词
dark matter; dark energy; galaxies: clusters: general; DARK-MATTER; CONFIGURATIONS; STABILITY;
D O I
10.1051/0004-6361/201118130
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. We investigate the equilibrium and stability of polytropic spheres in the presence of a non-zero cosmological constant. Aims. We solve the Newtonian gravitational equilibrium equation for a system with a polytropic equation of state of the matter P = K rho(gamma) introducing a non-zero cosmological constant Lambda. Methods. We consider the cases of n = 1, 1.5, 3 and construct series of solutions with a fixed value of Lambda. For each value of n, the non-dimensional equilibrium equation has a family of solutions, instead of the unique solution of the Lane-Emden equation at Lambda = 0. Results. The equilibrium state exists only for central densities rho(0) higher than the critical value rho(c). There are no static solutions at rho(0) < rho(c). We investigate the stability of equilibrium solutions in the presence of a non-zero Lambda and show that dark energy reduces the dynamic stability of the configuration. We apply our results to the analysis of the properties of the equilibrium states of clusters of galaxies in the present universe with non-zero Lambda.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] The self-gravitating gas in the presence of the cosmological constant
    de Vega, HJ
    Siebert, JA
    [J]. NUCLEAR PHYSICS B, 2005, 707 (03) : 529 - 552
  • [2] The effects of a non-zero cosmological constant on the Veltmann models
    Lingam, Manasvi
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 444 (02) : 1548 - 1558
  • [3] Self-gravitating scalar breathers with a negative cosmological constant
    Fodor, Gyula
    Forgacs, Peter
    Grandclement, Philippe
    [J]. PHYSICAL REVIEW D, 2015, 92 (02):
  • [4] On Self-Gravitating Polytropic Elastic Balls
    Calogero, Simone
    [J]. ANNALES HENRI POINCARE, 2022, 23 (12): : 4279 - 4318
  • [5] On Self-Gravitating Polytropic Elastic Balls
    Simone Calogero
    [J]. Annales Henri Poincaré, 2022, 23 : 4279 - 4318
  • [6] IMPLICATIONS OF A NONZERO COSMOLOGICAL CONSTANT ON SELF-GRAVITATING FERMIONIC SYSTEMS
    PACHECO, AF
    SANUDO, J
    SEGUI, A
    [J]. PHYSICS LETTERS B, 1986, 168 (03) : 223 - 225
  • [7] The Problem of a Self-Gravitating Scalar Field with Positive Cosmological Constant
    João L. Costa
    Artur Alho
    José Natário
    [J]. Annales Henri Poincaré, 2013, 14 : 1077 - 1107
  • [8] The Problem of a Self-Gravitating Scalar Field with Positive Cosmological Constant
    Costa, Joao L.
    Alho, Artur
    Natario, Jose
    [J]. ANNALES HENRI POINCARE, 2013, 14 (05): : 1077 - 1107
  • [9] Group analysis of dynamics equations of self-gravitating polytropic gas
    Klebanov, I.
    Panov, A.
    Ivanov, S.
    Maslova, O.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 437 - 443
  • [10] THE EQUILIBRIUM OF POLYTROPIC SELF-GRAVITATING SHEETLIKE MASSES
    IBANEZ, MH
    SIGALOTTI, LD
    [J]. ASTROPHYSICAL JOURNAL, 1984, 285 (02): : 784 - 790