On Self-Gravitating Polytropic Elastic Balls

被引:0
|
作者
Simone Calogero
机构
[1] Chalmers University of Technology,Department of Mathematical Sciences
[2] University of Gothenburg,undefined
来源
Annales Henri Poincaré | 2022年 / 23卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A new four-parameters family of constitutive functions for spherically symmetric elastic bodies is introduced which extends the two-parameters class of polytropic fluid models widely used in several applications of fluid mechanics. The four parameters in the polytropic elastic model are the polytropic exponent γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, the bulk modulus κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}, the shear exponent β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and the Poisson ratio ν∈(-1,1/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu \in (-1,1/2]$$\end{document}. The two-parameters class of polytropic fluid models arises as a special case when ν=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu =1/2$$\end{document} and β=γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =\gamma $$\end{document}. In contrast to the standard Lagrangian approach to elasticity theory, the polytropic elastic model in this paper is formulated directly in physical space, i.e., in terms of Eulerian state variables, which is particularly useful for the applications, e.g., to astrophysics where the reference state of the bodies of interest (stars, planets, etc.) is not observable. After discussing some general properties of the polytropic elastic model, the steady states and the homologous motion of Newtonian self-gravitating polytropic elastic balls are investigated. It is shown numerically that static balls exist when the parameters γ,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ,\beta $$\end{document} are contained in a particular region O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}$$\end{document} of the plane, depending on ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}, and proved analytically for (γ,β)∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\gamma ,\beta )\in {\mathcal {V}}$$\end{document}, where V⊂O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}\subset {\mathcal {O}}$$\end{document} is a disconnected set which also depends on the Poisson ratio ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. Homologous solutions describing continuously collapsing balls are constructed numerically when γ=4/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =4/3$$\end{document}. The radius of these solutions shrinks to zero in finite time, causing the formation of a center singularity with infinite density and pressure. Expanding self-gravitating homologous elastic balls are also constructed analytically for some special values of the shear parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}.
引用
收藏
页码:4279 / 4318
页数:39
相关论文
共 50 条
  • [1] On Self-Gravitating Polytropic Elastic Balls
    Calogero, Simone
    [J]. ANNALES HENRI POINCARE, 2022, 23 (12): : 4279 - 4318
  • [2] Static Self-gravitating Newtonian Elastic Balls
    Alho, A.
    Calogero, S.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 238 (02) : 639 - 669
  • [3] Static Self-gravitating Newtonian Elastic Balls
    A. Alho
    S. Calogero
    [J]. Archive for Rational Mechanics and Analysis, 2020, 238 : 639 - 669
  • [4] THE EQUILIBRIUM OF POLYTROPIC SELF-GRAVITATING SHEETLIKE MASSES
    IBANEZ, MH
    SIGALOTTI, LD
    [J]. ASTROPHYSICAL JOURNAL, 1984, 285 (02): : 784 - 790
  • [5] Steady states for polytropic equation of self-gravitating gas
    Raczynski, A
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (16) : 1881 - 1896
  • [7] Group analysis of dynamics equations of self-gravitating polytropic gas
    Klebanov, I.
    Panov, A.
    Ivanov, S.
    Maslova, O.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 437 - 443
  • [8] Static, self-gravitating elastic bodies
    Beig, R
    Schmidt, BG
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2029): : 109 - 115
  • [9] Analytic study of self-gravitating polytropic spheres with light rings
    Shahar Hod
    [J]. The European Physical Journal C, 2018, 78
  • [10] The structure of self-gravitating polytropic systems with n around 5
    Medvedev, MV
    Rybicki, G
    [J]. ASTROPHYSICAL JOURNAL, 2001, 555 (02): : 863 - 867