Automated Detection of Benign and Malignant in Breast Histopathology Images

被引:0
|
作者
Baker, Qanita Bani [1 ]
Abu Zaitoun, Toqa [1 ]
Banat, Sajda [1 ]
Eaydat, Eman [1 ]
Alsmirat, Mohammad [1 ]
机构
[1] Jordan Univ Sci & Technol, Comp Sciene Dept, Irbid, Jordan
关键词
Digital Pathology; Microscopic Images; Image Segmentation; K-means; Watershed; Image Analysis; Breast Cancer; Benign; Malignant;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Breast cancer detection and classification using histological images play a critical role in the breast cancer diagnosis process. This paper presents a framework for autodetection and classification of breast cancer from microscopic histological images. The images are classified into benign or malignant. The proposed framework involves several steps which include image enhancement, image segmentation, features extraction, and images classification. The proposed framework utilizes a novel combination of K-means clustering and watershed algorithms in the segmentation step. We used K-means clustering to produce an initial segmented image and then we applied the watershed segmentation algorithm. Classification results show that the proposed method effectively detect and classify breast cancer from histological image with accuracy of 70.7% using a proposed Rule-Based classifier and 86.5% using a Decision Tree classifier.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Nuclei Detection on Breast Cancer Histopathology Images Using RetinaNet
    Bozaba, Engin
    Solmaz, Gizem
    Yazici, Cisem
    Ozsoy, Gulsah
    Tokat, Fatma
    Iheme, Leonardo O.
    Cayir, Sercan
    Ayalti, Samet
    Kayhan, Cavit Kerem
    Ince, Umit
    [J]. 29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [22] Assessment of algorithms for mitosis detection in breast cancer histopathology images
    Veta, Mitko
    van Diest, Paul J.
    Willems, Stefan M.
    Wang, Haibo
    Madabhushi, Anant
    Cruz-Roa, Angel
    Gonzalez, Fabio
    Larsen, Anders B. L.
    Vestergaard, Jacob S.
    Dahl, Anders B.
    Ciresan, Dan C.
    Schmidhuber, Juergen
    Giusti, Alessandro
    Gambardella, Luca M.
    Tek, F. Boray
    Walter, Thomas
    Wang, Ching-Wei
    Kondo, Satoshi
    Matuszewski, Bogdan J.
    Precioso, Frederic
    Snell, Violet
    Kittler, Josef
    de Campos, Teofilo E.
    Khan, Adnan M.
    Rajpoot, Nasir M.
    Arkoumani, Evdokia
    Lacle, Miangela M.
    Viergever, Max A.
    Pluim, Josien P. W.
    [J]. MEDICAL IMAGE ANALYSIS, 2015, 20 (01) : 237 - 248
  • [23] Automated Malignancy Detection in Breast Histopathological Images
    Chekkoury, Andrei
    Khurd, Parmeshwar
    Ni, Jie
    Bahlmann, Claus
    Kamen, Ali
    Patel, Amar
    Grady, Leo
    Singh, Maneesh
    Groher, Martin
    Navab, Nassir
    Krupinski, Elizabeth
    Johnson, Jeffrey
    Graham, Anna
    Weinstein, Ronald
    [J]. MEDICAL IMAGING 2012: COMPUTER-AIDED DIAGNOSIS, 2012, 8315
  • [24] Detection and Segmentation of Mitotic Cell Nuclei in Breast Histopathology Images
    Thomas, Rintu Maria
    John, Jisha
    [J]. 2017 INTERNATIONAL CONFERENCE ON NETWORKS & ADVANCES IN COMPUTATIONAL TECHNOLOGIES (NETACT), 2017, : 246 - 250
  • [25] A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features
    Sakai, Ayaka
    Onishi, Yuya
    Matsui, Misaki
    Adachi, Hidetoshi
    Teramoto, Atsushi
    Saito, Kuniaki
    Fujita, Hiroshi
    [J]. RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2020, 13 (01) : 27 - 36
  • [26] A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features
    Ayaka Sakai
    Yuya Onishi
    Misaki Matsui
    Hidetoshi Adachi
    Atsushi Teramoto
    Kuniaki Saito
    Hiroshi Fujita
    [J]. Radiological Physics and Technology, 2020, 13 : 27 - 36
  • [27] HISTOPATHOLOGY OF BENIGN BREAST-LESIONS
    MILLIS, RR
    GIRLING, AC
    FENTIMAN, IS
    [J]. JOURNAL OF CLINICAL PATHOLOGY, 1988, 41 (09) : 1029 - 1029
  • [28] Automatic Detection and Classification of Benign and Malignant Lesions in Breast Ultrasound Images using Texture Morphological and Fractal Features
    Prabhakar, Telagarapu
    Poonguzhali, S.
    [J]. 2017 10TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON), 2017,
  • [29] Hybrid Feature Selection Using the Firefly Algorithm for Automatic Detection of Benign/Malignant Breast Cancer in Ultrasound Images
    Jesuharan, Dafni Rose
    Delsy, Thason Thaj Mary
    Kandasamy, Vijayakumar
    Kanagasabapathy, Pradeep Mohan Kumar
    [J]. TRAITEMENT DU SIGNAL, 2023, 40 (06) : 2671 - 2681
  • [30] A BAG-OF-FEATURES APPROACH FOR MALIGNANCY DETECTION IN BREAST HISTOPATHOLOGY IMAGES
    Bhandari, Smriti H.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4932 - 4936