Hyperspectral anomaly detection based on minimum generalized variance method

被引:13
|
作者
Lo, Edisanter [1 ]
Ingram, L. T. C. John [2 ]
机构
[1] Susquehanna Univ, Dept Math Sci, Selinsgrove, PA 17870 USA
[2] US Mil Acad, Photon Res Ctr, West Point, NY 10996 USA
关键词
anomaly detection; hyperspectral imaging; robust statistics;
D O I
10.1117/12.778929
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Anomaly detection for hyperspectral imaging is typically based on the Mahalanobis distance. The sample statistics for Mahalanobis- distance are not resistant to the anomalies that are present in the sample pixels. Consequently, the sample statistics do not estimate the corresponding population parameters accurately. In this paper, we will present -an algorithm for hyperspectral anomaly detection based on the Mahalanobis distance computed using robust statistics which are estimated based on the minimum generalized variance of the sample pixels. Numerical results- based on actual byperspectral images will be presented.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Hyperspectral anomaly detection based on the bilateral filter
    Yao, Xifeng
    Zhao, Chunhui
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2018, 92 : 144 - 153
  • [22] An Adaptive Kernel Method for Anomaly Detection in Hyperspectral Imagery
    Mei, Feng
    Zhao, Chunhui
    Hu, Hanjun
    Sun, Yan
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 874 - +
  • [23] A support vector method for anomaly detection in hyperspectral imagery
    Banerjee, Amit
    Burlina, Philippe
    Diehl, Chris
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08): : 2282 - 2291
  • [24] Performance Bound of Parallel Cascade Control System Based on Minimum Variance and Generalized Minimum Variance Benchmarking
    Guo, Jianwen
    Du, Wenli
    Qian, Feng
    [J]. PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 1334 - 1339
  • [25] Kernel Minimum Noise Fraction Transformation-Based Background Separation Model for Hyperspectral Anomaly Detection
    Xue, Tianru
    Jia, Jianxin
    Xie, Hui
    Zhang, Changxing
    Deng, Xuan
    Wang, Yueming
    [J]. REMOTE SENSING, 2022, 14 (20)
  • [26] A Feature-clustering-based Subspace Ensemble Method For Anomaly Detection In Hyperspectral Imagety
    Liu, Zhenlin
    Gu, Yanfeng
    Wang, Chen
    Han, Jinglong
    Zhang, Ye
    [J]. 2011 6TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2011, : 2274 - 2277
  • [27] A local Mahalanobis-distance method based on tensor decomposition for hyperspectral anomaly detection
    Zhao, Chunhui
    Zhang, Lili
    Cheng, Baozhi
    [J]. GEOCARTO INTERNATIONAL, 2019, 34 (05) : 490 - 503
  • [28] Enhance Tensor RPCA-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection
    Ruhan, A.
    Mu, Xiaodong
    He, Jingyuan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [29] A spectral-spatial based local summation anomaly detection method for hyperspectral images
    Du, Bo
    Zhao, Rui
    Zhang, Liangpei
    Zhang, Lefei
    [J]. SIGNAL PROCESSING, 2016, 124 : 115 - 131
  • [30] A Tensor-Based Hyperspectral Anomaly Detection Method Under Prior Physical Constraints
    Li, Xin
    Yuan, Yuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61