Online prediction of threading task failure using Convolutional Neural Networks

被引:0
|
作者
Moreira, Guilherme R. [1 ]
Lahr, Gustavo J. G. [1 ]
Savazzi, Jose O. [2 ]
Boaventura, Thiago [1 ]
Caurin, Glauco A. P. [3 ]
机构
[1] Univ Sao Paulo, Dept Mech Engn, Sao Carlos Sch Engn, Sao Carlos, SP, Brazil
[2] GPX Embraer, Gaviao Peixoto, SP, Brazil
[3] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Aeronaut Engn, Sao Carlos, SP, Brazil
关键词
DIAGNOSIS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fasteners assembly automation in different industries require flexible systems capable of dealing with faulty situations. Fault detection and isolation (FDI) techniques are used to detect failure and deal with them, avoiding losses on parts, tools or robots. However, FDI usually deals with the faults after or at the moment they occur. Thus, we propose a method that predicts potential failures online, based on the forces and torques signatures captured during the task. We demonstrate the approach experimentally using an industrial robot, equipped with a force-torque sensor and a pneumatic gripper, used to align and thread nuts into bolts. All effort information is fed into a supervised machine learning algorithm, based on a Convolutional Neural Network (CNN) classifier. The network was able to predict and classify the threading task outcomes in 3 groups: mounted, not mounted or jammed. Our approach was able to reduce in 10.9% the threading task execution time when compared to a reference without FDI, but had problem to predict jammed cases. The same experiment was also performed with other two additional learning algorithms, and the results were systematically compared.
引用
收藏
页码:2056 / 2061
页数:6
相关论文
共 50 条
  • [41] Path Loss Prediction in Urban Areas using Convolutional Neural Networks
    Rafie, Irfan Farhan Mohamad
    Lim, Soo Yong
    Chung, Michael Jenn Hwan
    2022 IEEE INTERNATIONAL RF AND MICROWAVE CONFERENCE, RFM, 2022,
  • [42] Network Prediction with Traffic Gradient Classification using Convolutional Neural Networks
    Ko, Taejin
    Raza, Syed M.
    Dang Thien Binh
    Kim, Moonseong
    Choo, Hyunseung
    PROCEEDINGS OF THE 2020 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM), 2020,
  • [43] Prediction of Geopolymer Concrete Compressive Strength Using Convolutional Neural Networks
    Ramujee, Kolli
    Sadula, Pooja
    Madhu, Golla
    Kautish, Sandeep
    Almazyad, Abdulaziz S.
    Xiong, Guojiang
    Mohamed, Ali Wagdy
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (02): : 1455 - 1486
  • [44] Prediction of adverse drug reactions using drug convolutional neural networks
    Mantripragada, Anjani Sankar
    Teja, Sai Phani
    Katasani, Rohith Reddy
    Joshi, Pratik
    Masilamani, V
    Ramesh, Raj
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2021, 19 (01)
  • [45] Prediction of activity cliffs on the basis of images using convolutional neural networks
    Iqbal, Javed
    Vogt, Martin
    Bajorath, Juergen
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2021, 35 (12) : 1157 - 1164
  • [46] Prediction and factors of Seoul apartment price using convolutional neural networks
    Lee, Hyunjae
    Son, Donghui
    Kim, Sujin
    Oh, Sein
    Kim, Jaejik
    KOREAN JOURNAL OF APPLIED STATISTICS, 2020, 33 (05) : 603 - 614
  • [47] Genomic prediction of growth traits in scallops using convolutional neural networks
    Zhu, Xinghai
    Ni, Ping
    Xing, Qiang
    Wang, Yangfan
    Huang, Xiaoting
    Hu, Xiaoli
    Hu, Jingjie
    Wu, Xiao-Lin
    Bao, Zhenmin
    AQUACULTURE, 2021, 545
  • [48] Prediction of radiosurgery response of brain metastases using convolutional neural networks
    Cha, Y.
    Kim, M. S.
    Cho, C. K.
    Yoo, H.
    Jang, W. I.
    Seo, Y. S.
    Kang, J. K.
    Paik, E. K.
    RADIOTHERAPY AND ONCOLOGY, 2017, 123 : S328 - S328
  • [49] STRESS FIELD PREDICTION IN CANTILEVERED STRUCTURES USING CONVOLUTIONAL NEURAL NETWORKS
    Nie, Zhenguo
    Jiang, Haoliang
    Kara, Levent Burak
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 1, 2020,
  • [50] Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram
    Nhan Duy Truong
    Anh Duy Nguyen
    Kuhlmann, Levin
    Bonyadi, Mohammad Reza
    Yang, Jiawei
    Ippolito, Samuel
    Kavehei, Omid
    NEURAL NETWORKS, 2018, 105 : 104 - 111