OPTIMAL LINEAR DISCRIMINATORS FOR THE DISCRETE CHOICE MODEL IN GROWING DIMENSIONS

被引:3
|
作者
Mukherjee, Debarghya [1 ]
Banerjee, Moulinath [1 ]
Ritov, Ya'acov [1 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
ANNALS OF STATISTICS | 2021年 / 49卷 / 06期
关键词
High dimensional statistics; maximum score estimator; nonstandard asymptotics; SEMIPARAMETRIC ESTIMATION; SELECTION; REGRESSION; BOOTSTRAP; LASSO; ESTIMATOR;
D O I
10.1214/21-AOS2085
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Manski's celebrated maximum score estimator for the discrete choice model, which is an optimal linear discriminator, has been the focus of much investigation in both the econometrics and statistics literatures, but its behavior under growing dimension scenarios largely remains unknown. This paper addresses that gap. Two different cases are considered: p grows with n but at a slow rate, that is, p / n -> 0; and p >> n (fast growth). In the binary response model, we recast Manski's score estimation as empirical risk minimization for a classification problem, and derive the l(2) rate of convergence of the score estimator under a new transition condition in terms of a margin parameter that calibrates the level of difficulty of the estimation problem. We also establish upper and lower bounds for the minimax l(2) error in the binary choice model that differ by a logarithmic factor, and construct a minimax-optimal estimator in the slow growth regime. Some extensions to the multinomial choice model are also considered.
引用
收藏
页码:3324 / 3357
页数:34
相关论文
共 50 条
  • [41] INVERSION PROBLEM OF OPTIMAL LINEAR DISCRETE REGULATORS
    ALIEV, FA
    IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1979, (02): : 95 - 100
  • [42] OPTIMAL SMOOTHING IN LINEAR DISCRETE-SYSTEMS
    AKHMEROV, MA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII AVIATSIONAYA TEKHNIKA, 1979, (04): : 1 - 9
  • [43] Optimal preview control of linear discrete systems
    Li, Dongmei
    Hu, Zhenkun
    Hu, Hengzhang
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2002, 26 (03): : 284 - 289
  • [44] Optimal controller design using discrete linear model for a four tank benchmark process
    Alipouri, Yousef
    Poshtan, Javad
    ISA TRANSACTIONS, 2013, 52 (05) : 644 - 651
  • [45] Discrete Choice Model of Agricultural Shipper's Mode Choice
    Mitra, Subhro
    TRANSPORTATION JOURNAL, 2013, 52 (01) : 6 - 25
  • [46] Calibration and test of a discrete choice model with endogenous choice sets
    Dai, J
    GEOGRAPHICAL ANALYSIS, 1998, 30 (02) : 95 - 118
  • [47] Optimal Technique for Measurement of Linear Left Ventricular Dimensions
    Chetrit, Michael
    Roujol, Sebastien
    Picard, Michael H.
    Timmins, Logan
    Manning, Warren J.
    Rudski, Lawrence G.
    Levine, Robert A.
    Afilalo, Jonathan
    JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2019, 32 (04) : 476 - +
  • [48] AN ALGORITHM FOR OPTIMAL SELECTION OF DEVICES FOR MEASURING LINEAR DIMENSIONS
    PANOVA, EI
    MEASUREMENT TECHNIQUES USSR, 1992, 35 (01): : 33 - 36
  • [49] Nearly Optimal Linear Embeddings into Very Low Dimensions
    Grant, Elyot
    Hegde, Chinmay
    Indyk, Piotr
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 973 - 976
  • [50] The Partial Linear Model in High Dimensions
    Mueller, Patric
    van de Geer, Sara
    SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (02) : 580 - 608