Catalytic steam reforming of biomass over Ni-based catalysts: Conversion from poplar leaves to hydrogen-rich syngas

被引:13
|
作者
Cao, Lingyan [1 ]
Jia, Zhigang [1 ]
Ji, Shengfu [1 ]
Hu, Jinyong [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
来源
JOURNAL OF NATURAL GAS CHEMISTRY | 2011年 / 20卷 / 04期
关键词
biomass; steam reforming; hydrogen-rich syngas; Ni-basic catalyst; CaO; FUEL GAS-PRODUCTION; SBA-15; CATALYSTS; WOODY BIOMASS; CO2; SORBENT; GASIFICATION; CAO; PROMOTER; METHANE;
D O I
10.1016/S1003-9953(10)60195-8
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A series of Ni/SBA-15 catalysts with Ni contents from 5 wt%-20 wt% and CaO-12.5%Ni/SBA-15 catalysts with CaO contents from 1.4 wt%-9.8 wt% have been prepared. The structure of the catalysts was characterized using X-ray diffraction (XRD), N-2 adsorption-desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The performance of catalytic steam reforming of the poplar leaves to the hydrogen-rich syngas was tested in a fixed-bed reactor. The results indicate that the 7.0wt%CaO-12.5wt%Ni/SBA-15 catalyst exhibits the best performance for the catalytic steam reforming of poplar leaves to hydrogen-rich syngas. The ratio of H-2 : CO can reach ca 5 : 1 in the hydrogen-rich syngas. The yield of H-2 can reach 273.30 mL/g (poplar leaves). In the CaO-Ni/SBA-15 catalyst, Ni active component mainly fills the role of catalytic steam reforming of the poplar leaves, and CaO active component mainly plays the role as water-gas shift and CO2 sorbent.
引用
收藏
页码:377 / 383
页数:7
相关论文
共 50 条
  • [31] Highly dispersed nickel nanoparticles supported on hydrochar for hydrogen-rich syngas production from catalytic reforming of biomass
    Gai, Chao
    Zhu, Nengmin
    Hoekman, S. Kent
    Liu, Zhengang
    Jiao, Wentao
    Peng, Nana
    ENERGY CONVERSION AND MANAGEMENT, 2019, 183 : 474 - 484
  • [32] Hydrogen-rich syngas production by catalytic cracking of polypropylene over activated carbon based monometallic and bimetallic Fe/Ni catalysts
    Wang, Shuxiao
    Sun, Yibo
    Shan, Rui
    Gu, Jing
    Huhe, Taoli
    Ling, Xiang
    Yuan, Haoran
    Chen, Yong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (62) : 23821 - 23830
  • [33] Machine learning-driven optimization of Ni-based catalysts for catalytic steam reforming of biomass tar
    Wang, Nantao
    He, Hongyuan
    Wang, Yaolin
    Xu, Bin
    Harding, Jonathan
    Yin, Xiuli
    Tu, Xin
    ENERGY CONVERSION AND MANAGEMENT, 2024, 300
  • [34] The Activity of Ni-Based Catalysts on Steam Reforming of Glycerol for Hydrogen Production
    Ebshish, Ali
    Yaakob, Zahira
    Narayanan, Binitha
    Bshish, Ahmed
    Daud, Wan Ramli Wan
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2011, 3 (01): : 5 - 8
  • [35] Steam reforming of ethanol for hydrogen production over MgO-supported Ni-based catalysts
    Wurzler, Gleicielle T.
    Rabelo-Neto, Raimundo C.
    Mattos, Lisiane V.
    Fraga, Marco A.
    Noronha, Fabio B.
    APPLIED CATALYSIS A-GENERAL, 2016, 518 : 115 - 128
  • [36] Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals
    Profeti, Luciene P. R.
    Dias, Joelmir A. C.
    Assaf, Jose M.
    Assaf, Elisabete M.
    JOURNAL OF POWER SOURCES, 2009, 190 (02) : 525 - 533
  • [37] A novelty catalytic reforming of tire pyrolysis oil for hydrogen-rich syngas
    Wang, Fengchao
    Gao, Ningbo
    Quan, Cui
    Liu, Huacai
    Li, Weizhen
    Yuan, Hongyou
    Yin, Xiuli
    ENERGY CONVERSION AND MANAGEMENT, 2024, 300
  • [38] Steam reforming of phenol over Ni-based catalysts - A comparative study
    Guell, B. Matas
    Babich, I. V.
    Lefferts, L.
    Seshan, K.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 106 (3-4) : 280 - 286
  • [39] Reaction network of steam reforming of ethanol over Ni-based catalysts
    Fatsikostas, AN
    Verykios, XE
    JOURNAL OF CATALYSIS, 2004, 225 (02) : 439 - 452
  • [40] Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts
    Ren, Shoujie
    Lei, Hanwu
    Wang, Lu
    Bu, Quan
    Chen, Shulin
    Wu, Joan
    RSC ADVANCES, 2014, 4 (21): : 10731 - 10737