Integer powers of anti-tridiagonal matrices of the form antitridiagn (a,c,-a), a, c ∈ C

被引:3
|
作者
da Silva, Joao Lita [1 ]
机构
[1] Univ Nova Lisboa, Fac Sci & Technol, Dept Math, P-2829516 Quinta Da Torre, Caparica, Portugal
关键词
anti-tridiagonal matrices; Chebyshev polynomials; ARBITRARY POSITIVE POWERS;
D O I
10.1080/00207160.2015.1073721
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive a general explicit expression for integer powers of complex anti-tridiagonal Hankel matrices having the form antitridiag(n) (a,c,-a), a, c is an element of C using Chebyshev polynomials.
引用
收藏
页码:1723 / 1740
页数:18
相关论文
共 50 条
  • [21] The c-numerical range of tridiagonal matrices
    Chien, MT
    Nakazato, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 335 (1-3) : 55 - 61
  • [22] Orthogonal diagonalization for complex skew-persymmetric anti-tridiagonal Hankel matrices
    Gutierrez-Gutierrez, Jesus
    Zarraga-Rodriguez, Marta
    SPECIAL MATRICES, 2016, 4 (01): : 73 - 79
  • [23] On computing of arbitrary positive integer powers for one type of tridiagonal matrices
    Rimas, J
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (03) : 1037 - 1040
  • [24] Spectral characterizations and integer powers of tridiagonal 2-Toeplitz matrices
    Shams Solary, Maryam
    Serra-Capizzano, Stefano
    NUMERICAL ALGORITHMS, 2024,
  • [25] Integer Powers of Certain Complex Tridiagonal Matrices and Some Complex Factorizations
    Bozkurt, Durmus
    Altindag, S. Burcu Bozkurt
    FILOMAT, 2017, 31 (15) : 4715 - 4724
  • [26] Positive Integer Powers of the Kronecker Sum of Two Tridiagonal Toeplitz Matrices
    Mezzar, Y.
    Belghaba, K.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2024, 14 (02): : 46 - 53
  • [27] C-MATRICES OF ARBITRARY POWERS
    TURYN, RJ
    CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (03): : 531 - &
  • [28] The characteristic polynomial of some anti-tridiagonal 2-Hankel matrices of even order
    da Silva, Joao Lita
    KUWAIT JOURNAL OF SCIENCE, 2019, 46 (02) : 1 - 6
  • [29] Explicit formula for positive integer powers of k-tridiagonal Toeplitz matrices
    Ji-Teng Jia
    Jie Wang
    Qi He
    Yu-Cong Yan
    Fatih Yılmaz
    Journal of Applied Mathematics and Computing, 2023, 69 : 811 - 822
  • [30] Explicit formula for positive integer powers of k-tridiagonal Toeplitz matrices
    Jia, Ji-Teng
    Wang, Jie
    He, Qi
    Yan, Yu-Cong
    Yilmaz, Fatih
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 811 - 822