A multilinear (tensor) framework for HRTF analysis and synthesis

被引:0
|
作者
Grindlay, Graham [1 ]
Vasilescu, M. Alex O. [1 ]
机构
[1] MIT, Media Lab, Cambridge, MA 02139 USA
关键词
audio systems; HRTF; tensors; multilinear algebra;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper introduces a multilinear (tensor) framework for the analysis and synthesis of the head-related transfer function (HRTF). The HRTF is the result of the confluence of two factors, sound location and person (anatomy). Our multilinear modeling technique employs a tensor extension of the conventional matrix singular value decomposition (SVD), known as the N-mode SVD [1] which explicitly represents the HRTF in terms of its constituent factors. Anatomical data is mapped to our multilinear HRTF model using regression. This mapping defines a data-driven model capable of producing different personalized HRTFs from easily obtained anatomical measurements. We show that our approach yields objectively superior results to those of a mapping based on principle components analysis (PCA).
引用
收藏
页码:161 / 164
页数:4
相关论文
共 50 条
  • [21] Tensor-based Uncorrelated Multilinear Discriminant Analysis for Epileptic Seizure Prediction
    Zhang, Renjie
    Jiang, Xinyu
    Dai, Chenyun
    Chen, Wei
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 541 - 544
  • [22] Facial Expression Synthesis using a Global-Local Multilinear Framework
    Wang, M.
    Bradley, D.
    Zafeiriou, S.
    Beeler, T.
    COMPUTER GRAPHICS FORUM, 2020, 39 (02) : 235 - 245
  • [23] A unified analysis framework for tensor metasurfaces
    Zhu, Bo O.
    Xiong, Xiaoyan Y. Z.
    Jiang, Li Jun
    JOURNAL OF OPTICS, 2018, 20 (08)
  • [24] MULTILINEAR MAPS AND TENSOR NORMS ON OPERATOR SYSTEMS
    PAULSEN, VI
    SMITH, RR
    JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 73 (02) : 258 - 276
  • [25] SOLVING MULTILINEAR SYSTEMS VIA TENSOR INVERSION
    Brazell, M.
    Li, N.
    Navasca, C.
    Tamon, C.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 542 - 570
  • [26] Multilinear mapping and symmetrical decomposition of tensor space
    Zhao, Jian-li
    Zhang, Ying-shan
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 276 - 278
  • [27] TENSOR BEAMFORMING FOR MULTILINEAR TRANSLATION INVARIANT ARRAYS
    Ribeiro, Lucas N.
    de Almeida, Andre L. F.
    Mota, Joao C. M.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2966 - 2970
  • [28] A survey of multilinear subspace learning for tensor data
    Lu, Haiping
    Plataniotis, Konstantinos N.
    Venetsanopoulos, Anastasios N.
    PATTERN RECOGNITION, 2011, 44 (07) : 1540 - 1551
  • [29] MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA
    Hoff, Peter D.
    Annals of Applied Statistics, 2015, 9 (03): : 1169 - 1193
  • [30] MULTILINEAR COMPRESSIVE SENSING WITH TENSOR RING FACTORIZATION
    Asif, M. Salman
    Prater-Bennette, Ashley
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2100 - 2104