On the boundary smoothness of conformal mappings between domains with nonsmooth boundaries

被引:4
|
作者
Dolzhenko, E. P. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
基金
俄罗斯基础研究基金会;
关键词
(Edited Abstract);
D O I
10.1134/S1064562407040096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The boundary smoothness of conformal mappings between domains with nonsmooth boundaries is characterized by its modulus of continuity by assuming that the quality of an arbitrary Jordan curve is characterized by its modulus of oscillation. A connected bounded domain in the plane with Jordan boundary is found to be univalent conformal mapping from the domain to the unit disk. A univalent conformal mapping from the unit disk to a bounded domain with rectifiable Jordan boundary satisfies Warschawski inequality. A mapping with Jordan boundary to a bounded domain with Jordan boundary are defined by quantities depending on a small quantities. The conformal mapping is extended over the closure of the arc and the homomorphism from one union set to an intersection set.
引用
收藏
页码:514 / 518
页数:5
相关论文
共 50 条
  • [41] Some problems of conformal mappings of spherical domains
    Bourchtein, Andrei
    Bourchtein, Ludmila
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (06): : 926 - 939
  • [42] One inequality for conformal mappings of spherical domains
    Bourchtein, Ludmila
    Bourchtein, Andrei
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (02): : 233 - 246
  • [43] CONFORMAL-MAPPINGS OF SINGULARLY PERTURBED DOMAINS
    SIMONENKO, IB
    SIMONENKO, RA
    DOKLADY AKADEMII NAUK SSSR, 1986, 289 (02): : 302 - 305
  • [44] BOUNDARY PROPERTIES OF CONFORMAL AND QUASI-CONFORMAL MAPPINGS OF POLYGONS
    GORDIENKO, VM
    SIBERIAN MATHEMATICAL JOURNAL, 1992, 33 (06) : 966 - 972
  • [45] On the analysis of boundary value problems in nonsmooth domains
    Fremiot, Gilles
    Horn, Werner
    Laurain, Antoine
    Rao, Murali
    Sokolowski, Jan
    DISSERTATIONES MATHEMATICAE, 2009, (462) : 7 - +
  • [46] On the HÖlder property of mappings in domains and on boundaries
    Ryazanov V.I.
    Salimov R.R.
    Sevost’yanov E.A.
    Journal of Mathematical Sciences, 2020, 246 (1) : 60 - 74
  • [47] On the Besov regularity of conformal maps and layer potentials on nonsmooth domains
    Mitrea, D
    Mitrea, I
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (02) : 380 - 429
  • [48] A GENERALIZED-METHOD OF MAPPINGS IN STATIC BOUNDARY-VALUE-PROBLEMS FOR DOMAINS WITH ANALYTIC BOUNDARIES
    APELTSIN, VF
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (02): : 119 - 128
  • [49] Polycircular domains, numerical conformal mappings, and moduli of quadrilaterals
    Mohamed Nasser
    Oona Rainio
    Antti Rasila
    Matti Vuorinen
    Terry Wallace
    Hang Yu
    Xiaohui Zhang
    Advances in Computational Mathematics, 2022, 48
  • [50] Polycircular domains, numerical conformal mappings, and moduli of quadrilaterals
    Nasser, Mohamed
    Rainio, Oona
    Rasila, Antti
    Vuorinen, Matti
    Wallace, Terry
    Yu, Hang
    Zhang, Xiaohui
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (05)