A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP

被引:6
|
作者
Graham, Naomi [1 ]
Hu, Hao [2 ]
Im, Jiyoung [3 ]
Li, Xinxin [4 ]
Wolkowicz, Henry [3 ]
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[2] Clemson Univ, Sch Math & Stat Sci, Clemson, SC 29634 USA
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[4] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
quadratic assignment problem; semidefinite relaxation; doubly nonnegative relaxation; facial reduction; Peaceman-Rachford splitting method; ALTERNATING DIRECTION METHOD; QUADRATIC ASSIGNMENT PROBLEM; LOCAL LINEAR CONVERGENCE; MULTIPLIERS; ALGORITHMS; LAYOUT; ADMM;
D O I
10.1287/ijoc.2022.1161
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Splitting methods in optimization arise when one can divide an optimization problem into two or more simpler subproblems. They have proven particularly successful for relaxations of problems involving discrete variables. We revisit and strengthen splitting methods for solving doubly nonnegative relaxations of the particularly difficult, NP-hard quadratic assignment problem. We use a modified restricted contractive splitting method approach. In particular, we show how to exploit redundant constraints in the subproblems. Our strengthened bounds exploit these new subproblems and new dual multiplier estimates to improve on the bounds and convergence results in the literature.
引用
收藏
页码:2125 / 2143
页数:19
相关论文
共 50 条
  • [1] Image Recovery By Peaceman-Rachford Operator Splitting Method
    Sun, Yubao
    Wei, Zhihui
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 524 - 527
  • [2] A STRICTLY CONTRACTIVE PEACEMAN-RACHFORD SPLITTING METHOD FOR CONVEX PROGRAMMING
    He, Bingsheng
    Liu, Han
    Wang, Zhaoran
    Yuan, Xiaoming
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (03) : 1011 - 1040
  • [3] Generalized Peaceman-Rachford splitting method with substitution for convex programming
    Deng, Zhao
    Liu, Sanyang
    OPTIMIZATION LETTERS, 2020, 14 (07) : 1781 - 1802
  • [4] A BREGMAN PROXIMAL PEACEMAN-RACHFORD SPLITTING METHOD FOR CONVEX PROGRAMMING
    Bnouhachem A.
    Rassias M.T.
    Applied Set-Valued Analysis and Optimization, 2022, 4 (02): : 129 - 143
  • [5] A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem
    Li, Xinxin
    Pong, Ting Kei
    Sun, Hao
    Wolkowicz, Henry
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 78 (03) : 853 - 891
  • [6] EFFECTS OF SCALING OF PEACEMAN-RACHFORD METHOD
    WIDLUND, OB
    MATHEMATICS OF COMPUTATION, 1971, 25 (113) : 33 - &
  • [7] Convergence of the Peaceman-Rachford Splitting Method for a Class of Nonconvex Programs
    Chao, Miantao
    Han, Deren
    Cai, Xingju
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (02): : 438 - 460
  • [8] CONVERGENCE OF PEACEMAN-RACHFORD ITERATIVE METHOD
    ALEFELD, G
    NUMERISCHE MATHEMATIK, 1976, 26 (04) : 409 - 419
  • [9] A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem
    Xinxin Li
    Ting Kei Pong
    Hao Sun
    Henry Wolkowicz
    Computational Optimization and Applications, 2021, 78 : 853 - 891
  • [10] Convergence of Bregman Peaceman-Rachford Splitting Method for Nonconvex Nonseparable Optimization
    Liu, Peng-Jie
    Jian, Jin-Bao
    He, Bo
    Jiang, Xian-Zhen
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (04) : 707 - 733