Asymptotic transformations of q-series

被引:4
|
作者
McIntosh, RJ [1 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
关键词
D O I
10.4153/CJM-1998-022-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the q-series Sigma(n=0)(infinity)a(n)q(bn2+cn)/(q)(n) we construct a companion q-series such that the asymptotic expansions of their logarithms as q --> 1(-) differ only in the dominant few terms. The asymptotic expansion of their quotient then has a simple closed form; this gives rise to a new q-hypergeometric identity. We give an asymptotic expansion of a general class of q-series containing some of Ramanujan's mock theta functions and Selberg's identities.
引用
收藏
页码:412 / 425
页数:14
相关论文
共 50 条
  • [21] Dissections of Strange q-Series
    Scott Ahlgren
    Byungchan Kim
    Jeremy Lovejoy
    Annals of Combinatorics, 2019, 23 : 427 - 442
  • [22] PRETZEL KNOTS AND q-SERIES
    Elhamdadi, Mohamed
    Hajij, Mustafa
    OSAKA JOURNAL OF MATHEMATICS, 2017, 54 (02) : 363 - 381
  • [23] Knots and Their Related q-Series
    Garoufalidis, Stavros
    Zagier, Don
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [24] On a symmetric q-series identity
    Patkowski, Alexander E.
    DISCRETE MATHEMATICS, 2016, 339 (12) : 2994 - 2997
  • [25] ON THE q-DERIVATIVE AND q-SERIES EXPANSIONS
    Liu, Zhi-Guo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (08) : 2069 - 2089
  • [26] On q-series identities for false theta series
    Jennings-Shaffer, Chris
    Milas, Antun
    ADVANCES IN MATHEMATICS, 2020, 375
  • [27] ON SOME MORE q-SERIES IDENTITIES
    Singh, S. N.
    Singh, Satya Prakash
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, (35): : 669 - 676
  • [28] Quantum Dilogarithms and Partition q-Series
    Kato, Akishi
    Terashima, Yuji
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (01) : 457 - 481
  • [29] On Arithmetical Properties of Certain q-Series
    Ville Merilä
    Results in Mathematics, 2009, 53 : 129 - 151
  • [30] Remarks on MacMahon's q-series
    Ono, Ken
    Singh, Ajit
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 207