Room Temperature Magnesium Electrorefining by Using Non-Aqueous Electrolyte

被引:5
|
作者
Park, Jesik [1 ]
Jung, Yeojin [2 ]
Kusumah, Priyandi [2 ]
Dilasari, Bonita [2 ]
Ku, Heesuk [2 ]
Kim, Hansu [3 ]
Kwon, Kyungjung [2 ]
Lee, Churl Kyoung [1 ]
机构
[1] Kumoh Natl Inst Technol, Sch Adv Mat & Syst Engn, Gumi 39177, South Korea
[2] Sejong Univ, Dept Energy & Mineral Resources Engn, Seoul 05006, South Korea
[3] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
关键词
alloys; purification; electrochemistry; scanning electron microscopy; magnesium; BMIMBF4 IONIC LIQUID; ALLOY; ELECTRODEPOSITION; DEPOSITION; BATTERIES; MG; DISSOLUTION; CORROSION; LITHIUM; COUPLES;
D O I
10.1007/s12540-016-5605-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The increasing usage of magnesium inevitably leads to a fast increase in magnesium scrap, and magnesium recycling appears extremely beneficial for cost reduction, preservation of natural resources and protection of the environment. Magnesium refining for the recovery of high purity magnesium from metal scrap alloy (AZ31B composed of magnesium, aluminum, zinc, manganese and copper) at room temperature is investigated with a non-aqueous electrolyte (tetrahydrofuran with ethyl magnesium bromide). A high purity (99.999%) of electrorefined magneisum with a smooth and dense surface is obtained after potentiostatic electrolysis with an applied voltage of 2 V. The selective dissolution of magnesium from magnesium alloy is possible by applying an adequate potential considering the tolerable impurity level in electrorefined magnesium and processing time. The purity estimation method suggested in this study can be useful in evaluating the maximum content of impurity elements.
引用
收藏
页码:907 / 914
页数:8
相关论文
共 50 条
  • [41] Organic redox flow batteries in non-aqueous electrolyte solutions
    Ahn, Seongmo
    Yun, Ariyeong
    Ko, Donghwi
    Singh, Vikram
    Joo, Jung Min
    Byon, Hye Ryung
    CHEMICAL SOCIETY REVIEWS, 2025, 54 (02) : 742 - 789
  • [42] Fluoride-ion solvation in non-aqueous electrolyte solutions
    Davis, Victoria K.
    Munoz, Stephen
    Kim, Jeongmin
    Bates, Christopher M.
    Momcilovic, Nebojsa
    Billings, Keith J.
    Miller, Thomas F., III
    Grubbs, Robert H.
    Jones, Simon C.
    MATERIALS CHEMISTRY FRONTIERS, 2019, 3 (12) : 2721 - 2727
  • [43] NON-AQUEOUS ELECTROLYTE-SOLUTIONS IN CHEMISTRY AND MODERN TECHNOLOGY
    BARTHEL, J
    GORES, HJ
    SCHMEER, G
    WACHTER, R
    TOPICS IN CURRENT CHEMISTRY-SERIES, 1983, 111 : 33 - 144
  • [44] Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries
    Liu, Qinghua
    Shinkle, Aaron A.
    Li, Yongdan
    Monroe, Charles W.
    Thompson, Levi T.
    Sleightholme, Alice E. S.
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (11) : 1634 - 1637
  • [45] Non-aqueous potentiometry using zeolites
    Dryfe, RAW
    Hayes, P
    Holmes, SM
    ANALYST, 2001, 126 (06) : 733 - 735
  • [46] Kinetics of Magnesium Deposition and Stripping from Non-Aqueous Electrolytes
    Crowe, Adam J.
    DiMeglio, John L.
    Stringham, Kyle K.
    Bartlett, Bart M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (38): : 20613 - 20620
  • [47] THERMODYNAMIC PROPERTIES OF ELECTROLYTE IN NON-AQUEOUS SOLUTIONS .8. SOLUBILITY AND FREE ENERGY OF TRANSFER OF IONS IN NON-AQUEOUS SOLVENTS
    IZMAILOV, NA
    CHERNYI, VS
    ZHURNAL FIZICHESKOI KHIMII, 1960, 34 (02): : 319 - 326
  • [48] OBSERVATION AND ANALYSIS OF CARBIDES IN STEELS USING NON-AQUEOUS ELECTROLYTE-POTENTIOSTATIC ETCHING METHOD
    KUROSAWA, F
    TAGUCHI, I
    MATSUMOTO, R
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1980, 44 (11) : 1288 - 1295
  • [49] OBSERVATION AND ANALYSIS OF NITRIDES IN STEELS USING THE NON-AQUEOUS ELECTROLYTE-POTENTIOSTATIC ETCHING METHOD
    KUROSAWA, F
    TAGUCHI, I
    TANINO, M
    MATSUMOTO, R
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1981, 45 (01) : 63 - 71
  • [50] OBSERVATION AND ANALYSIS OF SULFIDES IN STEELS USING NON-AQUEOUS ELECTROLYTE-POTENTIOSTATIC ETCHING METHOD
    KUROSAWA, F
    TAGUCHI, I
    TANINO, M
    MATSUMOTO, R
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1980, 44 (06) : 677 - 686