A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data

被引:70
|
作者
Xiao, Yawen [1 ,2 ]
Wu, Jun [3 ,4 ]
Lin, Zongli [5 ]
Zhao, Xiaodong [6 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] Minist Educ, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
[3] East China Normal Univ, Ctr Bioinformat & Computat Biol, Shanghai Key Lab Regulatory Biol, Inst Biomed Sci, Shanghai 200241, Peoples R China
[4] East China Normal Univ, Sch Life Sci, Shanghai 200241, Peoples R China
[5] Univ Virginia, Charles L Brown Dept Elect & Comp Engn, POB 400743, Charlottesville, VA 22904 USA
[6] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200240, Peoples R China
关键词
Stacked sparse auto-encoder; Cancer prediction; Gene expression data; Semi-supervised learning; Deep learning; FEATURE-SELECTION; MACHINE; AUTOENCODER; DIAGNOSIS; PROGNOSIS;
D O I
10.1016/j.cmpb.2018.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: Cancer has become a complex health problem due to its high mortality. Over the past few decades, with the rapid development of the high-throughput sequencing technology and the application of various machine learning methods, remarkable progress in cancer research has been made based on gene expression data. At the same time, a growing amount of high-dimensional data has been generated, such as RNA-seq data, which calls for superior machine learning methods able to deal with mass data effectively in order to make accurate treatment decision. Methods: In this paper, we present a semi-supervised deep learning strategy, the stacked sparse auto-encoder (SSAE) based classification, for cancer prediction using RNA-seq data. The proposed SSAE based method employs the greedy layer-wise pre-training and a sparsity penalty term to help capture and extract important information from the high-dimensional data and then classify the samples. Results: We tested the proposed SSAE model on three public RNA-seq data sets of three types of cancers and compared the prediction performance with several commonly-used classification methods. The results indicate that our approach outperforms the other methods for all the three cancer data sets in various metrics. Conclusions: The proposed SSAE based semi-supervised deep learning model shows its promising ability to process high-dimensional gene expression data and is proved to be effective and accurate for cancer prediction. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [21] Correlative Data Based Sparse Denoising Auto-Encoder for Feature Learning
    Zhao, Yudi
    Ding, Yongsheng
    Hao, Kuangrong
    Tang, Xuesong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 10896 - 10901
  • [22] Solo: Doublet Identification in Single-Cell RNA-Seq via Semi-Supervised Deep Learning
    Bernstein, Nicholas J.
    Fong, Nicole L.
    Lam, Irene
    Roy, Margaret A.
    Hendrickson, David G.
    Kelley, David R.
    CELL SYSTEMS, 2020, 11 (01) : 95 - +
  • [23] A Feature Extraction Method Based on Stacked Auto-Encoder for Telecom Churn Prediction
    Li, Ruiqi
    Wang, Peng
    Chen, Zonghai
    THEORY, METHODOLOGY, TOOLS AND APPLICATIONS FOR MODELING AND SIMULATION OF COMPLEX SYSTEMS, PT I, 2016, 643 : 568 - 576
  • [24] A Deep Learning Method Based on Hybrid Auto-Encoder Model
    Yang, ZhenYu
    Jing, Hui
    PROCEEDINGS OF 2017 IEEE 2ND INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2017, : 1100 - 1104
  • [25] Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels
    Deng, Congying
    Deng, Zihao
    Miao, Jianguo
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 242
  • [26] A robust semi-supervised NMF model for single cell RNA-seq data
    Wu, Peng
    An, Mo
    Zou, Hai-Ren
    Zhong, Cai-Ying
    Wang, Wei
    Wu, Chang-Peng
    PEERJ, 2020, 8
  • [27] A novel smart meter data compression method via stacked convolutional sparse auto-encoder
    Wang, Shouxiang
    Chen, Haiwen
    Wu, Lei
    Wang, Jianfeng
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 118
  • [28] Induction motors fault diagnosis using a stacked sparse auto-encoder deep neural network
    Jorkesh, Saeid
    Gholaminejad, Azadeh
    Poshtan, Javad
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2023, 237 (02) : 359 - 369
  • [29] Deep Feature Learning for Tibetan Speech Recognition using Sparse Auto-encoder
    Wang, H.
    Zhao, Y.
    Liu, X. F.
    Xu, X. N.
    Wang, L.
    Zhou, N.
    Xu, Y. M.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING (EAME 2015), 2015, 13 : 342 - 345
  • [30] A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis
    Wen, Long
    Gao, Liang
    Li, Xinyu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (01): : 136 - 144