A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data

被引:70
|
作者
Xiao, Yawen [1 ,2 ]
Wu, Jun [3 ,4 ]
Lin, Zongli [5 ]
Zhao, Xiaodong [6 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] Minist Educ, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
[3] East China Normal Univ, Ctr Bioinformat & Computat Biol, Shanghai Key Lab Regulatory Biol, Inst Biomed Sci, Shanghai 200241, Peoples R China
[4] East China Normal Univ, Sch Life Sci, Shanghai 200241, Peoples R China
[5] Univ Virginia, Charles L Brown Dept Elect & Comp Engn, POB 400743, Charlottesville, VA 22904 USA
[6] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200240, Peoples R China
关键词
Stacked sparse auto-encoder; Cancer prediction; Gene expression data; Semi-supervised learning; Deep learning; FEATURE-SELECTION; MACHINE; AUTOENCODER; DIAGNOSIS; PROGNOSIS;
D O I
10.1016/j.cmpb.2018.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: Cancer has become a complex health problem due to its high mortality. Over the past few decades, with the rapid development of the high-throughput sequencing technology and the application of various machine learning methods, remarkable progress in cancer research has been made based on gene expression data. At the same time, a growing amount of high-dimensional data has been generated, such as RNA-seq data, which calls for superior machine learning methods able to deal with mass data effectively in order to make accurate treatment decision. Methods: In this paper, we present a semi-supervised deep learning strategy, the stacked sparse auto-encoder (SSAE) based classification, for cancer prediction using RNA-seq data. The proposed SSAE based method employs the greedy layer-wise pre-training and a sparsity penalty term to help capture and extract important information from the high-dimensional data and then classify the samples. Results: We tested the proposed SSAE model on three public RNA-seq data sets of three types of cancers and compared the prediction performance with several commonly-used classification methods. The results indicate that our approach outperforms the other methods for all the three cancer data sets in various metrics. Conclusions: The proposed SSAE based semi-supervised deep learning model shows its promising ability to process high-dimensional gene expression data and is proved to be effective and accurate for cancer prediction. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [1] Semi-supervised Auto-encoder Based on Manifold Learning
    Li, Yawei
    Jin, Lizuo
    Qin, A. K.
    Sun, Changyin
    Ong, Yew Soon
    Cui, Tong
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4032 - 4039
  • [2] A semi-supervised auto-encoder using label and sparse regularizations for classification
    Chai, Zhilei
    Song, Wei
    Wang, Huiling
    Liu, Fei
    APPLIED SOFT COMPUTING, 2019, 77 : 205 - 217
  • [3] Disentangled Variational Auto-Encoder for semi-supervised learning
    Li, Yang
    Pan, Quan
    Wang, Suhang
    Peng, Haiyun
    Yang, Tao
    Cambria, Erik
    INFORMATION SCIENCES, 2019, 482 : 73 - 85
  • [4] A semi-supervised deep auto-encoder based intrusion detection for iot
    Fenanir S.
    Semchedine F.
    Harous S.
    Baadache A.
    Fenanir, Samir (samir.fenanir@univ-setif.dz), 2020, International Information and Engineering Technology Association (25): : 569 - 577
  • [5] Intrusion Detection System using Semi-Supervised Learning with Adversarial Auto-encoder
    Hara, Kazuki
    Shiomoto, Kohei
    NOMS 2020 - PROCEEDINGS OF THE 2020 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2020: MANAGEMENT IN THE AGE OF SOFTWARIZATION AND ARTIFICIAL INTELLIGENCE, 2020,
  • [6] Learning New Semi-Supervised Deep Auto-encoder Features for Statistical Machine Translation
    Lu, Shixiang
    Chen, Zhenbiao
    Xu, Bo
    PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, 2014, : 122 - 132
  • [7] A road segmentation method based on the deep auto-encoder with supervised learning
    Song, Xiaona
    Rui, Ting
    Zhang, Sai
    Fei, Jianchao
    Wang, Xinqing
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 68 : 381 - 388
  • [8] Semi-Supervised Domain Adaptation with Auto-Encoder via Simultaneous Learning
    Rahman, Md Mahmudur
    Panda, Rameswar
    Alam, Mohammad Arif Ul
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 402 - 411
  • [9] Data Reconstruction Based on Supervised Deep Auto-Encoder
    Rui, Ting
    Zhang, Sai
    Ren, Tongwei
    Tang, Jian
    Zou, Junhua
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II, 2018, 10736 : 869 - 879
  • [10] Deep Stacked Sparse Auto-encoder based on Patches for Image Classification
    Jemel, Intidar
    Hassairi, Salima
    Ejbali, Ridha
    Zaied, Mourad
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433