A new concept for block operator matrices: the quadratic numerical range

被引:55
|
作者
Langer, H
Markus, A
Matsaev, V
Tretter, C [1 ]
机构
[1] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
[2] Vienna Univ Technol, Inst Anal & Tech Math, A-1040 Vienna, Austria
[3] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[4] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
block operator matrix; quadratic numerical range; Schur complement; angular operator; Riccati equation;
D O I
10.1016/S0024-3795(01)00230-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a new concept for 2 x 2-block operator matrices - the quadratic numerical range - is studied. The main results are a spectral inclusion theorem, an estimate of the resolvent in terms of the quadratic numerical range, factorization theorems for the Schur complements, and a theorem about angular operator representations of spectral invariant subspaces which implies e,g. the existence of solutions of the corresponding Riccati equations and a block diagonalization. All results are new in the operator as well as in the matrix case. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:89 / 112
页数:24
相关论文
共 50 条
  • [31] Weighted EP of Block Operator Matrices
    Xiaopeng LI
    Junjie HUANG
    Alatancang CHEN
    Journal of Mathematical Research with Applications, 2022, 42 (03) : 230 - 242
  • [32] Fredholmness and Weylness of Block Operator Matrices
    Sarajlijaa, Nikola
    FILOMAT, 2022, 36 (08) : 2507 - 2518
  • [33] New extremal binary self-dual codes from block circulant matrices and block quadratic residue circulant matrices
    Gildea, J.
    Kaya, A.
    Taylor, R.
    Tylyshchak, A.
    Yildiz, B.
    DISCRETE MATHEMATICS, 2021, 344 (11)
  • [34] Computing the quadratic numerical range
    Jacob, Birgit
    Vorberg, Lukas
    Wyss, Christian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 453
  • [35] Weighted numerical radius inequalities for operator and operator matrices
    Raj Kumar Nayak
    Acta Scientiarum Mathematicarum, 2024, 90 : 193 - 206
  • [36] Weighted numerical radius inequalities for operator and operator matrices
    Nayak, Raj Kumar
    ACTA SCIENTIARUM MATHEMATICARUM, 2024, 90 (1-2): : 193 - 206
  • [37] New numerical radius inequalities for operator matrices and a bound for the zeros of polynomials
    Frakis, Abdelkader
    Kittaneh, Fuad
    Soltani, Soumia
    ADVANCES IN OPERATOR THEORY, 2023, 8 (01)
  • [38] New numerical radius inequalities for operator matrices and a bound for the zeros of polynomials
    Abdelkader Frakis
    Fuad Kittaneh
    Soumia Soltani
    Advances in Operator Theory, 2023, 8
  • [39] Numerical radius inequalities for operator matrices
    Bani-Domi, Wathiq
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04): : 421 - 427
  • [40] On Numerical Radius Inequalities for Operator Matrices
    Guelfen, Hanane
    Kittaneh, Fuad
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (11) : 1231 - 1241