A new concept for block operator matrices: the quadratic numerical range

被引:55
|
作者
Langer, H
Markus, A
Matsaev, V
Tretter, C [1 ]
机构
[1] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
[2] Vienna Univ Technol, Inst Anal & Tech Math, A-1040 Vienna, Austria
[3] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[4] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
block operator matrix; quadratic numerical range; Schur complement; angular operator; Riccati equation;
D O I
10.1016/S0024-3795(01)00230-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a new concept for 2 x 2-block operator matrices - the quadratic numerical range - is studied. The main results are a spectral inclusion theorem, an estimate of the resolvent in terms of the quadratic numerical range, factorization theorems for the Schur complements, and a theorem about angular operator representations of spectral invariant subspaces which implies e,g. the existence of solutions of the corresponding Riccati equations and a block diagonalization. All results are new in the operator as well as in the matrix case. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:89 / 112
页数:24
相关论文
共 50 条
  • [1] Approximation of the Quadratic Numerical Range of Block Operator Matrices
    Muhammad, Ahmed
    Marletta, Marco
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 74 (02) : 151 - 162
  • [2] Approximation of the Quadratic Numerical Range of Block Operator Matrices
    Ahmed Muhammad
    Marco Marletta
    Integral Equations and Operator Theory, 2012, 74 : 151 - 162
  • [3] On the geometry of the quadratic numerical range for 2 x 2 block operator matrices
    Li, Rongfang
    Wu, Deyu
    Chen, Alatancang
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (07): : 1315 - 1328
  • [4] Approximation of the Block Numerical Range of Block Operator Matrices
    Yu, Jiahui
    Chen, Alatancang
    Huang, Junjie
    Wu, Jiaojiao
    FILOMAT, 2019, 33 (12) : 3877 - 3881
  • [5] Linear operator preserving the Quadratic Numerical Range of Block Operator Matrix
    Zhai, Fahui
    Liu, Ping
    Sun, Lihong
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 196 - 199
  • [6] TOPOLOGICAL PROPERTIES OF THE BLOCK NUMERICAL RANGE OF OPERATOR MATRICES
    Radl, Agnes
    Wolff, Manfred P. H.
    OPERATORS AND MATRICES, 2020, 14 (04): : 1001 - 1014
  • [7] Symmetry of the Quadratic Numerical Range and Spectral Inclusion Properties of Hamiltonian Operator Matrices
    Huang, J.
    Liu, J.
    Chen, A.
    MATHEMATICAL NOTES, 2018, 103 (5-6) : 1007 - 1013
  • [8] Symmetry of the Quadratic Numerical Range and Spectral Inclusion Properties of Hamiltonian Operator Matrices
    J. Huang
    J. Liu
    A. Chen
    Mathematical Notes, 2018, 103 : 1007 - 1013
  • [9] The Conditions of Quadratic Numerical Range of Block Operator Matrix Equal to Its Spectrum
    Liu, Ping
    Sun, Lihong
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 79 - 82
  • [10] The Quadratic Numerical Range of an Analytic Operator Function
    Christiane Tretter
    Complex Analysis and Operator Theory, 2010, 4 : 449 - 469