Discrete dislocation simulation of the ultrasonic relaxation of non-equilibrium grain boundaries in a deformed polycrystal

被引:7
|
作者
Bachurin, D. V. [1 ,2 ]
Murzaev, R. T. [2 ]
Nazarov, A. A. [2 ,3 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl Mat Appl Mat Phys, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Russian Acad Sci, Inst Met Superplast Problems, 39 Khalturin St, Ufa 450001, Russia
[3] Nosov Magnitogorsk State Tech Univ, 38 Lenin St, Magnitogorsk 455000, Russia
关键词
Ultrasonic treatment; Disordered dislocation struc tures; Non-equilibrium grain boundaries; Dislocation rearrangement; Columnar polycrystal; HIGH-PRESSURE TORSION; IMPACT TREATMENT; NICKEL; DYNAMICS; METALS; DEFORMATION; STRENGTH; TRIPOLES; BEHAVIOR; SIZE;
D O I
10.1016/j.ultras.2021.106555
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
For the first time, the relaxation of disordered dislocation arrays in a model 3 x 3 columnar polycrystal under ultrasonic action is studied using the discrete dislocation approach. A l l grains contain three non-parallel slip systems located at an angle of 60 degrees to each other. The non-equilibriu m state of the grain boundaries is modeled using two finite edge dislocation walls with Burgers vector of opposite signs, which are equivalent to a wedge junction disclination quadrupole. It is shown that ultrasonic treatment causes a significant rearrangement of the lattice dislocations and their gliding towards the grain boundaries. It results in a decrease in the internal stress fields associated with the presence of non-equilibriu m grain boundaries and relaxation of dislocation structure. The model predicts an existence of optimal amplitude, at which the maximu m relaxing effect can be achieved. Dependence of the relaxation of dislocation structure on the grain size is also investigated .
引用
收藏
页数:9
相关论文
共 50 条