Highly-defective Fe-N-C catalysts towards pH-Universal oxygen reduction reaction

被引:132
|
作者
Wei, Xiaoqian [1 ]
Luo, Xin [1 ]
Wang, Hengjia [1 ]
Gu, Wenling [1 ]
Cai, Weiwei [2 ]
Lin, Yuehe [3 ]
Zhu, Chengzhou [1 ]
机构
[1] Cent China Normal Univ, Coll Chem, Int Joint Res Ctr Intelligent Biosensing Technol, Key Lab Pesticide & Chem Biol,Minist Educ, Wuhan 430079, Peoples R China
[2] China Univ Geosci, Fac Mat Sci & Chem, Sustainable Energy Lab, Wuhan 430074, Peoples R China
[3] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
关键词
Nonprecious metal catalysts; Fe-N-C catalysts; Defect engineerings; Etching; Oxygen reduction reaction; METAL-FREE ELECTROCATALYSTS; POROUS CARBON NANOSHEETS; EFFICIENT ELECTROCATALYST; GRAPHENE NANORIBBONS; ACTIVE-SITES; PERFORMANCE; IRON; NANOPARTICLES; EVOLUTION; ELECTRODE;
D O I
10.1016/j.apcatb.2019.118347
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The defect engineering of nonprecious metal catalysts (NPMCs) is of significance to advance the oxygen reduction reaction (ORR) catalysts for the application of electrochemical energy devices. Herein, a facile H2O2 etching strategy is proposed to design Fe and N co-doped carbon catalysts (Fe-N-C/H2O2). Thanks to the etching of C, the defective carbon (DC) is endowed with robust anchoring ability, which is conducive to the modulation of active sites and microstructures, and further improvement of their ORR performances. Due to the supporting effect, the effective 3D nanostructures can be constructed. Integrated with the composition and morphology features, the resultant Fe-N-C/H2O2 achieves remarkable ORR performance with onset potential of 0.93 V and super stability with a subtle negative shift of 13.1 mV after 20 000 cycles in 0.1 M HClO4. Meanwhile, superior ORR performances are also revealed in alkaline and neutral electrolytes. This work provides an effective strategy for the design of advanced electrocatalysts towards fuel cells.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction
    Jiang, Run
    Qiao, Zelong
    Xu, Haoxiang
    Cao, Dapeng
    CHINESE JOURNAL OF CATALYSIS, 2023, 48 : 224 - 234
  • [22] The role of iron nitrides in the Fe-N-C catalysis system towards the oxygen reduction reaction
    Wang, Min
    Yang, Yushi
    Liu, Xiaobo
    Pu, Zonghua
    Kou, Zongkui
    Zhu, Peipei
    Mu, Shichun
    NANOSCALE, 2017, 9 (22) : 7641 - 7649
  • [23] Facile Chemical Vapor Deposition of Fe-N-C Materials for pH-Universal Hydrogen Peroxide Detection
    Li, Cheng
    Zhang, Xiao
    Liu, Jia
    Liu, Guoqing
    Sun, Guangying
    Xu, Wanli
    Zheng, Qifu
    Xie, Jian
    Shen, Hangjia
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (09)
  • [24] Bio-Assisted Atomically Dispersed Fe-N-C Electrocatalyst with Ultra-Low Fe Loading toward pH-Universal Oxygen Reduction Reaction and Neutral Zn-Air Battery
    Tang, Sirui
    Liu, Qingju
    Zhang, Longzhou
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (21) : 8131 - 8139
  • [25] The effect of temperature on ionic liquid modified Fe-N-C catalysts for alkaline oxygen reduction reaction
    Wolker, Thomas
    Brunnengräber, Kai
    Martinaiou, Ioanna
    Lorenz, Nick
    Zhang, Gui-Rong
    Kramm, Ulrike I.
    Etzold, Bastian J.M.
    Journal of Energy Chemistry, 2022, 68 : 324 - 329
  • [26] Sulfur-Doped Fe-N-C Nanomaterials as Catalysts for the Oxygen Reduction Reaction in Acidic Medium
    Maouche, Chanez
    Yang, Juan
    Al-Hilfi, Samir H.
    Tao, Xiafang
    Zhou, Yazhou
    ACS APPLIED NANO MATERIALS, 2022, 5 (03) : 4397 - 4405
  • [27] Enhancing activity and stability of Fe-N-C catalysts through co incorporation for oxygen reduction reaction
    Zhu, Qingchao
    Xiang, Tingting
    Chen, Chenglong
    Zhang, Jiali
    Wu, Zirui
    Rao, Shaosheng
    Li, Bing
    Yang, Juan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 663 : 53 - 60
  • [28] Unraveling the potential-dependent degradation mechanism in Fe-N-C catalysts for oxygen reduction reaction
    Chu, Yuyi
    Cheng, Yuqing
    Wang, Pengbo
    Bai, Jingsen
    Guan, Xin
    Wang, Shuo
    Lan, Chang
    Wu, Hongxiang
    Shi, Zhaoping
    Zhu, Siyuan
    Liu, Wei
    Liu, Changpeng
    Xiao, Meiling
    Xing, Wei
    SCIENCE CHINA-CHEMISTRY, 2025, 68 (04) : 1541 - 1549
  • [29] The effect of temperature on ionic liquid modified Fe-N-C catalysts for alkaline oxygen reduction reaction
    Thomas Wolker
    Kai Brunnengr?ber
    Ioanna Martinaiou
    Nick Lorenz
    Gui-Rong Zhang
    Ulrike I.Kramm
    Bastian J.M.Etzold
    JournalofEnergyChemistry, 2022, 68 (05) : 324 - 329
  • [30] The effect of temperature on ionic liquid modified Fe-N-C catalysts for alkaline oxygen reduction reaction
    Wolker, Thomas
    Brunnengraeber, Kai
    Martinaiou, Ioanna
    Lorenz, Nick
    Zhang, Gui-Rong
    Kramm, Ulrike, I
    Etzold, Bastian J. M.
    JOURNAL OF ENERGY CHEMISTRY, 2022, 68 : 324 - 329