Sparse MRI: The application of compressed sensing for rapid MR imaging

被引:5179
|
作者
Lustig, Michael
Donoho, David
Pauly, John M.
机构
[1] Stanford Univ, Dept Elect Engn, Magnet Resonance Syst Res Lab, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
关键词
compressed sensing; compressive sampling; random sampling; rapid MRI; sparsity; sparse reconstruction; nonlinear reconstruction;
D O I
10.1002/mrm.21391
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The sparsity which is implicit in MR images is exploited to significantly undersample k-space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain-for example, in terms of spatial finite-differences or their wavelet coefficients. According to the recently developed mathematical theory of compressed-sensing, images with a sparse representation can be recovered from randomly undersampled k-space data, provided an appropriate nonlinear recovery scheme is used. Intuitively, artifacts due to random undersampling add as noise-like interference. In the sparse transform domain the significant coefficients stand out above the interference. A nonlinear thresholding scheme can recover the sparse coefficients, effectively recovering the image itself. In this article, practical incoherent undersampling schemes are developed and analyzed by means of their aliasing interference. Incoherence is introduced by pseudo-random variable-density undersampling of phase-encodes. The reconstruction is performed by minimizing the l(1) norm of a transformed image, subject to data fidelity constraints. Examples demonstrate improved spatial resolution and accelerated acquisition for multislice fast spinecho brain imaging and 3D contrast enhanced angiography.
引用
收藏
页码:1182 / 1195
页数:14
相关论文
共 50 条
  • [31] Compressed sensing MRI
    Lustig, Michael
    Donoho, David L.
    Santos, Juan M.
    Pauly, John M.
    IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) : 72 - 82
  • [32] Sparse Radar Imaging Using 2D Compressed Sensing
    Hou, Qingkai
    Liu, Yang
    Chen, Zengping
    Su, Shaoying
    MILLIMETRE WAVE AND TERAHERTZ SENSORS AND TECHNOLOGY VII, 2014, 9252
  • [33] Compressed Sensing Radar Imaging of Off-Grid Sparse Targets
    Yan, Huichen
    Xu, Jia
    Zhang, Xudong
    2015 IEEE INTERNATIONAL RADAR CONFERENCE (RADARCON), 2015, : 690 - 693
  • [34] THz sparse periodic array imaging system using compressed sensing
    Hu, Shaoqing
    Shu, Chao
    Alfadhl, Yasir
    Chen, Xiaodong
    IET MICROWAVES ANTENNAS & PROPAGATION, 2020, 14 (11) : 1157 - 1161
  • [35] SAR Change Imaging in the Sparse Transforming Domain Based on Compressed Sensing
    Chen, Wenjiao
    Geng, Jiwen
    Yu, Ze
    Guo, Yukun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 9519 - 9530
  • [36] Microwave Imaging with Random Sparse Array and Compressed Sensing for Target Detection
    Huang, Ling
    Lu, Yilong
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM), 2015, : 124 - 125
  • [37] Compressive Hyperspectral Imaging via Sparse Tensor and Nonlinear Compressed Sensing
    Yang, Shuyuan
    Wang, Min
    Li, Peng
    Jin, Li
    Wu, Bin
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (11): : 5943 - 5957
  • [38] Imaging method based on compressed sensing for the cognitive sparse aperture of ISAR
    Sun, Feng-Lian
    Zhang, Qun
    Luo, Ying
    Gu, Fu-Fei
    Wang, Guo-Zheng
    Tongxin Xuebao/Journal on Communications, 2012, 33 (SUPPL.2): : 262 - 269
  • [39] Evaluation of compressed sensing MRI for accelerated bowel motility imaging
    C. S. de Jonge
    B. F. Coolen
    E. S. Peper
    A. G. Motaal
    C. Y. Nio
    I. Somers
    G. J. Strijkers
    J. Stoker
    A. J. Nederveen
    European Radiology Experimental, 3
  • [40] Evaluation of compressed sensing MRI for accelerated bowel motility imaging
    de Jonge, C. S.
    Coolen, B. F.
    Peper, E. S.
    Motaal, A. G.
    Nio, C. Y.
    Somers, I
    Strijkers, G. J.
    Stoker, J.
    Nederveen, A. J.
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2019, 3 (01)