Hydrazine Hydrate-Induced Surface Modification of CdS Electron Transport Layer Enables 10.30%-Efficient Sb2(S,Se)3 Planar Solar Cells

被引:42
|
作者
Li, Jianmin [1 ,2 ]
Zhao, Yuqi [1 ,2 ]
Li, Chuang [1 ,2 ]
Wang, Shaoying [1 ,2 ]
Chen, Xueling [1 ,2 ]
Gong, Junbo [1 ,2 ]
Wang, Xiaomin [3 ,4 ]
Xiao, Xudong [1 ,2 ]
机构
[1] Wuhan Univ, Key Lab Artificial Micro & Nanostruct, Minist Educ, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[3] Shenzhen Univ, Ctr Biomed Opt & Photon CBOP, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Shenzhen 518060, Peoples R China
基金
中国博士后科学基金;
关键词
CdS thin film; hydrazine hydrate; interfaces; Sb2(S; Se)(3) solar cells; solution treatment; PERFORMANCE; FILMS; CADMIUM; SB-2(S;
D O I
10.1002/advs.202202356
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Antimony selenosulfide (Sb-2(S,Se)(3)), a simple alloyed compound containing earth-abundant constituents, with a tunable bandgap and high absorption coefficient has attracted significant attention in high-efficiency photovoltaic applications. Optimizing interfacial defects and absorber layers to a high standard is essential in improving the efficiency of Sb-2(S,Se)(3) solar cells. In particular, the electron transport layer (ETL) greatly affects the final device performance of the superstrate structure. In this study, a simple and effective hydrazine hydrate (N2H4) solution post-treatment is proposed to modify CdS ETL in order to enhance Sb-2(S,Se)(3) solar cell efficiency. By this process, oxides and residual chlorides, caused by CdCl2 treated CdS under a high temperature over 400 degrees C in air, are appropriately removed, rendering smoother and flatter CdS ETL as well as high-quality Sb-2(S,Se)(3) thin films. Furthermore, the interfacial energy band alignment and recombination loss are both improved, resulting in an as-fabricated FTO/CdS-N2H4/Sb-2(S,Se)(3)/spiro-OMeTAD/Au solar cell with a high PCE of 10.30%, placing it in the top tier of Sb-based solar devices. This study provides a fresh perspective on interfacial optimization and promotes the future development of antimony chalcogenide-based planar solar cells.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Heterojunction interface engineering of C 60 electron transport layer insertion enables efficient Cd-free Sb2Se3 solar cells
    Duan, Chunyan
    Luo, Ping
    Hu, Changji
    Hu, Wenrong
    Imran, Tahir
    Su, Zhenghua
    Zhang, Xianghua
    Tang, Rong
    Liang, Guangxing
    Chen, Shuo
    SURFACES AND INTERFACES, 2024, 50
  • [32] Selenization of Sb2Se3 absorber layer: An efficient step to improve device performance of CdS/Sb2Se3 solar cells
    Leng, Meiying
    Luo, Miao
    Chen, Chao
    Qin, Sikai
    Chen, Jie
    Zhong, Jie
    Tang, Jiang
    APPLIED PHYSICS LETTERS, 2014, 105 (08)
  • [33] Influence of the electron buffer layer on the photovoltaic performance of planar Sb2(SxSe1-x)3 solar cells
    Andres Jaramillo-Quintero, Oscar
    Elizabeth Rincon, Marina
    Vasquez-Garcia, Geovanni
    Nair, P. K.
    PROGRESS IN PHOTOVOLTAICS, 2018, 26 (09): : 709 - 717
  • [34] Fine adjusting of charge carriers transport in absorber/HTL interface in Sb2(S,Se)3 solar cells
    Saadat, M.
    Amiri, O.
    SOLAR ENERGY, 2022, 243 : 163 - 173
  • [35] Surface treatment processed electron transport layers for efficient Sb2S3 solar cells
    Hou, Sanyuan
    Zhang, Xiaokun
    Dai, Guohao
    Wang, Xiaomin
    Wang, Haolin
    Chen, Tao
    Wang, Kefan
    Xiao, Xudong
    Li, Jianmin
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [36] Surface treatment processed electron transport layers for efficient Sb2S3 solar cells
    Hou, Sanyuan
    Zhang, Xiaokun
    Dai, Guohao
    Wang, Xiaomin
    Wang, Haolin
    Chen, Tao
    Wang, Kefan
    Xiao, Xudong
    Li, Jianmin
    Chemical Engineering Journal, 1600, 500
  • [37] Cs+-Induced Se/S Ratio Variation to Regulate Energy Band Structure for Efficient Sb2(S,Se)3 Bulk Heterojunction Solar Cells
    Xu, Zhiheng
    Chen, Junwei
    Li, Gaoyang
    Ruan, Chengwu
    Wang, Yichao
    Zhang, Yan
    Chen, Chong
    He, Liqing
    Tong, Guoqing
    Xu, Jun
    SMALL, 2025,
  • [38] Over 10% Efficient Sb2(S,Se)3 Solar Cells Enabled by CsI-Doping Strategy
    Zhang, Lei
    Zheng, Jianzha
    Liu, Cong
    Xie, Yifei
    Lu, Hanyu
    Luo, Qinrong
    Liu, Yulong
    Yang, Huidong
    Shen, Kai
    Mai, Yaohua
    SMALL, 2024, 20 (27)
  • [39] Single-junction bifacial and semitransparent Sb2(S,Se)3 solar cells
    Qian, Chen
    Sun, Kaiwen
    Green, Martin
    Hoex, Bram
    Hao, Xiaojing
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,
  • [40] Enhancement in the efficiency of Sb2(S,Se)3 thin-film solar cells with spin-coating NiOx as the hole transport layer
    Huang, Shan
    Xing, Yelei
    Zhu, Honcheng
    Zhang, Tingyu
    Geng, Kangjun
    Yang, Yusheng
    Zhang, Han
    Gu, Qingyan
    Qiu, Jianhua
    Jiang, Sai
    Guo, Huafei
    Yuan, Ningyi
    Ding, Jianning
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (09) : 3098 - 3104