Correcting systematic mismatches in computed log-likelihood ratios

被引:13
|
作者
van Dijk, M
Janssen, AJEM
Koppelaar, AGC
机构
[1] Philips Semicond Adv Syst Lab, NL-5656 AA Eindhoven, Netherlands
[2] Philips Res Labs, NL-5656 AA Eindhoven, Netherlands
来源
关键词
D O I
10.1002/ett.917
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
A log-likelihood ratio (LLR) measures the reliability (and uncertainty) of a binary random variable being a zero versus being a one. LLRs are used as input in many implementations of decoding algorithms which also output LLRs. Mismatches in the outputs are, for example, generated by a decoder which is implemented by using approximations during its computations e.g. the symbol-by-symbol max-log a posteriori probability (APP) algorithm versus the correct forward-backward (log-APP) algorithm or Hagenauer's approximation of the box function. We propose post-processing of output LLRs to correct part of the mismatches. This post-processing is a function of the statistics of the input LLRs. As examples, we study the effect of incorrectly scaled inputs to the box function leading to mismatched outputs, Hagenauer's approximation to the box function, and the effect of compensating mismatches of LLRs on the performance of iterative decoders. Copyright (C) 2003 AEI.
引用
收藏
页码:227 / 244
页数:18
相关论文
共 50 条
  • [41] Unbiased estimation of the gradient of the log-likelihood in inverse problems
    Jasra, Ajay
    Law, Kody J. H.
    Lu, Deng
    [J]. STATISTICS AND COMPUTING, 2021, 31 (03)
  • [42] A maximum log-likelihood approach to voice activity detection
    Gauci, Oliver
    Debono, Carl J.
    Micallef, Paul
    [J]. 2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 383 - 387
  • [43] Log-likelihood ratio test for detecting transient change
    Jaruskova, Daniela
    Piterbarg, Vladimir I.
    [J]. STATISTICS & PROBABILITY LETTERS, 2011, 81 (05) : 552 - 559
  • [44] Log-likelihood of earthquake models: evaluation of models and forecasts
    Harte, D. S.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 201 (02) : 711 - 723
  • [45] A Donsker-Type Theorem for Log-Likelihood Processes
    Su, Zhonggen
    Wang, Hanchao
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (03) : 1401 - 1425
  • [46] Generalized selection combining based on the log-likelihood ratio
    Kim, SW
    Kim, YG
    Simon, MK
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5: NEW FRONTIERS IN TELECOMMUNICATIONS, 2003, : 2789 - 2794
  • [47] Human Pose Regression with Residual Log-likelihood Estimation
    Li, Jiefeng
    Bian, Siyuan
    Zeng, Ailing
    Wang, Can
    Pang, Bo
    Liu, Wentao
    Lu, Cewu
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 11005 - 11014
  • [48] Log-Likelihood Ratio Algorithm for Rate Compatible Modulation
    Rao, Wengui
    Dong, Yan
    Lu, Fang
    Wang, Shu
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 1938 - 1941
  • [49] A Comparison between BP, Log-Likelihood and Max Log-Likelihood Decoding Algorithms of LDPC Codes Based on EXIT Chart and EXIT Trajectories Methods
    Refaey-Ahmed, A.
    Chouinard, J. Yves
    Roy, Sebastien
    Fortier, Paul
    [J]. 2008 INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR COMMUNICATIONS, PROCEEDINGS, 2008, : 193 - 198
  • [50] Robust and Simple Log-Likelihood Approximation for Receiver Design
    Mestrah, Yasser
    Savard, Anne
    Goupil, Alban
    Gelle, Guillaume
    Clavier, Laurent
    [J]. 2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,