Finite element methods for elliptic optimal control problems with boundary observations

被引:8
|
作者
Yan, Ming [1 ]
Gong, Wei [2 ]
Yan, Ningning [3 ]
机构
[1] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Inst Computat Math, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, NCMIS, LSEC, Acad Math & Syst Sci,Inst Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
A priori error estimates; Boundary observations; Finite elements; Mixed finite elements; Optimal control problemS; DISCRETIZATION; APPROXIMATION;
D O I
10.1016/j.apnum.2014.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in this paper the finite element apprbximations to elliptic optimal control problems with boundary observations. The main feature of this kind of optimal control problems is that the observations or measurements are the outward normal derivatives of the state variable on the boundary, this reduces the regularity of solutions to the optimal control problems. We propose two kinds of finite element methods: the standard FEM and the mixed FEM, to efficiently approximate the underlying optimal control problems. For both cases we derive a priori error estimates for problems posed on polygonal domain. Some numerical experiments are carried out at the end of the paper to support our theoretical findings. (C) 2014 IMACS. Published by Elsevier B.V. All tights reserved.
引用
收藏
页码:190 / 207
页数:18
相关论文
共 50 条
  • [21] Superconvergence of H1-Galerkin Mixed Finite Element Methods for Elliptic Optimal Control Problems
    Liu, Chunmei
    Hou, Tianliang
    Yang, Yin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (01) : 87 - 101
  • [22] A priori error estimates of mixed finite element methods for general semilinear elliptic optimal control problems
    Lu Z.
    Chen Y.
    Computational Mathematics and Modeling, 2013, 24 (1) : 114 - 135
  • [23] Weak Galerkin finite element methods for optimal control problems governed by second order elliptic equations
    Wang, Chunmei
    Wang, Junping
    Zhang, Shangyou
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 452
  • [24] Finite element and Runge-Kutta methods for boundary-value and optimal control problems
    Bottasso, CL
    Ragazzi, A
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2000, 23 (04) : 749 - 751
  • [25] A robust optimal preconditioner for the mixed finite element discretization of elliptic optimal control problems
    Gong, Wei
    Tan, Zhiyu
    Zhang, Shuo
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (01)
  • [26] On finite element methods for heterogeneous elliptic problems
    LNCC - Laboratório Nacional de Computação Científica, Av. Getúlio Vargas 333, Petrópolis, CEP 25651-075 RJ, Brazil
    Int. J. Solids Struct., 25-26 (6436-6450):
  • [27] On finite element methods for heterogeneous elliptic problems
    Loula, A. F. D.
    Correa, M. R.
    Guerreiro, J. N. C.
    Toledo, E. M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (25-26) : 6436 - 6450
  • [28] Superconvergence of mixed finite element methods for optimal control problems
    Chen, Yanping
    MATHEMATICS OF COMPUTATION, 2008, 77 (263) : 1269 - 1291
  • [29] An energy space finite element approach for elliptic Dirichlet boundary control problems
    G. Of
    T. X. Phan
    O. Steinbach
    Numerische Mathematik, 2015, 129 : 723 - 748
  • [30] An energy space finite element approach for elliptic Dirichlet boundary control problems
    Of, G.
    Phan, T. X.
    Steinbach, O.
    NUMERISCHE MATHEMATIK, 2015, 129 (04) : 723 - 748