Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)

被引:88
|
作者
Chanprateep, Suchada [1 ]
Buasri, Ketsunee [1 ]
Muangwong, Aumtiga [1 ]
Utiswannakul, Phonpisit [1 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Microbiol, Bangkok 10330, Thailand
基金
日本科学技术振兴机构;
关键词
Polyhydroxyalkanoates; Biopolymer; Bioprocess; Biocompatibility; TISSUE; POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE); POLYHYDROXYALKANOATES; HYDROXYBUTYRATE; COPOLYESTERS; DEGRADATION; ACID;
D O I
10.1016/j.polymdegradstab.2010.07.014
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(3-hydroxybutyrate), PHB, and poly(3-hydroxybutyrate-co-4-hydroxybutyrate), P(3HB-co-4HB), consisting of 0-94% mole fraction of 4HB content, were produced in high content by Cupriavidus necator strain A-04. The carbon sources used for PHB production included sugars made locally in Thailand: refined sugarcane, brown sugarcane, rock sugar, toddy palm sugar and coconut palm sugar. The switching of the ratios of carbon to nitrogen, together with the ratios of fructose to 1,4-butanediol, were applied to P(3HB-co-4HB) production in fed-batch cultures. Optimal P(3HB-co-4HB) production was achieved with 112 g biomass and 73 g P(3HB-co-4HB) with 38% mole fraction of 4HB content. Next, P(3HB-co-4HB) with a 0, 5, 24,38 and 64% mole fraction of 4HB content were purified and prepared as plastic films. The mechanical properties and biocompatibility of these films were tested and compared with commercial PHB, polystyrene (PS) and polyvinylchloride (PVC) prepared without additives. The results demonstrated that PHB had thermal and mechanical properties similar to those of commercial PHB. The P(3HB-co-4HB) polymers possessed melting temperature and glass transition temperature values higher than those reported previously. The mechanical properties were compared with those of PS and PVC. The in vitro biocompatibility was assessed using L929, human dermal fibroblast and Saos-2 human osteosarcoma cells. The cytotoxicity results and scanning electron micrographs showed that P(3HB-co-4HB) films have good surface characteristics and can promote cell attachment, proliferation and differentiation. Combined with their good mechanical properties, P(3HB-co-4HB) polymers possess potential usefulness for biomaterial applications in artificial skin tissue support and orthopedic support. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2003 / 2012
页数:10
相关论文
共 50 条
  • [31] Biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/curcumin composite film as a smart indicator of food spoilage
    Choi, Yun Hyeok
    Kim, Jun Tae
    Kim, Min Hee
    Park, Won Ho
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 408
  • [32] Microbial-based synthesis of highly elastomeric biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thermoplastic
    Huong, Kai-Hee
    Teh, Chin-Hoe
    Amirul, A. A.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2017, 101 : 983 - 995
  • [33] Effect of 4-Hydroxybutyrate Content on Physical Properties of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
    Jo, Minki
    Jang, Yunjae
    Lee, Eunhye
    Shin, Sooan
    Kang, Ho-Jong
    POLYMER-KOREA, 2022, 46 (05) : 551 - 558
  • [34] Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from γ-aminobutyrate and glutamate
    Valentin, HE
    Reiser, S
    Gruys, KJ
    BIOTECHNOLOGY AND BIOENGINEERING, 2000, 67 (03) : 291 - 299
  • [35] PRODUCTION OF POLY(3-HYDROXYBUTYRATE-CO-4-HYDROXYBUTYRATE) BY PSEUDOMONAS-ACIDOVORANS
    KIMURA, H
    YOSHIDA, Y
    DOI, Y
    BIOTECHNOLOGY LETTERS, 1992, 14 (06) : 445 - 450
  • [36] Production of Hydroxybutyrate Monomers by Pseudomonas mendocina Biodegraded Poly (3-hydroxybutyrate-co-4-hydroxybutyrate)
    Mao, Hailong
    Li, Linlin
    Jiang, Husheng
    Wang, Zhanyong
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2014, 8 (03): : 1875 - 1882
  • [37] Supercritical CO2 Foaming of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
    Zhang, Tao
    Jang, Yunjae
    Lee, Eunhye
    Shin, Sooan
    Kang, Ho-Jong
    POLYMERS, 2022, 14 (10)
  • [38] Thermal degradation behavior of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate]
    Omura, Taku
    Goto, Tatsuya
    Maehara, Akira
    Kimura, Satoshi
    Abe, Hideki
    Iwata, Tadahisa
    POLYMER DEGRADATION AND STABILITY, 2021, 183
  • [39] Tailoring the surface architecture of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) scaffolds
    Vigneswari, S.
    Majid, M. I. A.
    Amirul, A. A.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 124 (04) : 2777 - 2788
  • [40] Non-isothermal Crystallization of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
    Kim, Youngwook
    Park, Jinkyu
    Jang, Yunjae
    Jung, Minho
    Lee, Eunhye
    Kang, Ho-Jong
    POLYMER-KOREA, 2024, 48 (01) : 68 - 76