Higher index symplectic capacities do not satisfy the symplectic Brunn-Minkowski inequality

被引:2
|
作者
Kerman, Ely [1 ]
Liang, Yuanpu [1 ]
机构
[1] Univ Illinois, Dept Math, 1409 West Green St, Urbana, IL 61801 USA
关键词
TOPOLOGY;
D O I
10.1007/s11856-021-2172-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [1], Artstein-Avidan and Ostrover establish a symplectic version of the classical Brunn-Minkowski inequality where the role of the volume is played by the Ekeland-Hofer-Zehnder capacity. Here we prove that this symplectic Brunn-Minkowski inequality fails to hold for all of the higher index symplectic capacities defined by Gutt and Hutchings in [5].
引用
收藏
页码:27 / 38
页数:12
相关论文
共 50 条
  • [41] Triangulations and a Discrete Brunn-Minkowski Inequality in the Plane
    Boroczky, Karoly J.
    Matolcsi, Mate
    Ruzsa, Imre Z.
    Santos, Francisco
    Serra, Oriol
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 64 (02) : 396 - 426
  • [42] A new approach to the Orlicz Brunn-Minkowski inequality
    Feng, Yibin
    He, Binwu
    ADVANCES IN APPLIED MATHEMATICS, 2019, 107 : 144 - 156
  • [43] A curved Brunn-Minkowski inequality for the symmetric group
    Neeranartvong, Weerachai
    Novak, Jonathan
    Sothanaphan, Nat
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (01):
  • [44] On the case of equality in the Brunn-Minkowski inequality for capacity
    Caffarelli, LA
    Jerison, D
    Lieb, EH
    ADVANCES IN MATHEMATICS, 1996, 117 (02) : 193 - 207
  • [45] Dual Brunn-Minkowski inequality for volume differences
    Lv, Songjun
    GEOMETRIAE DEDICATA, 2010, 145 (01) : 169 - 180
  • [46] More Generalizations of Hartfiel's Inequality and the Brunn-Minkowski Inequality
    Dong, Sheng
    Wang, Qing-Wen
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (01) : 21 - 29
  • [47] Extensions of Brunn-Minkowski's inequality to multiple matrices
    Li Y.
    Feng L.
    Linear Algebra and Its Applications, 2021, 603 : 91 - 100
  • [48] The Orlicz Brunn-Minkowski Inequality for Dual Harmonic Quermassintegrals
    Xiang Wu
    Shougui Li
    Acta Mathematica Scientia, 2019, 39 : 945 - 954
  • [49] An equivalence form of the Brunn-Minkowski inequality for volume differences
    Zhao, Chang-Jian
    Cheung, Wing-Sum
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (06) : 1373 - 1381
  • [50] THE ORLICZ BRUNN-MINKOWSKI INEQUALITY FOR DUAL HARMONIC QUERMASSINTEGRALS
    吴翔
    李寿贵
    ActaMathematicaScientia, 2019, 39 (04) : 945 - 954