Three dimensional multi-physics modeling and simulation for assessment of mass transport impact on the performance of a high temperature polymer electrolyte membrane fuel cell

被引:22
|
作者
Das, Susanta K. [1 ]
Gibson, Hilniqua A. [1 ]
机构
[1] Kettering Univ, Ctr Fuel Cell Syst & Powertrain Integrat, Dept Mech Engn, 1700 Univ Ave, Flint, MI 48439 USA
关键词
High temperature PEM fuel Cell; 3D model; Species concentration; Ionic current; Multi-physics simulation; CO; PEMFC; POLYBENZIMIDAZOLE; STACK;
D O I
10.1016/j.jpowsour.2021.229844
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The impact of multi-species transports on the performance of a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) is studied by incorporating multi-physics electro-kinetics in a 3D model at 180 C. A basecase 3D model simulation was carried-out and the validation results showed a very good agreement with the experimental results. The results showed overall performance improvements in HTPEMFC at various parametric conditions. Higher membrane thickness has reduced the cell performance significantly due to increased membrane resistance to the proton flow whereas higher membrane conductivity produced the largest performance improvements among all operating conditions considered. The results showed that the electrolyte ionic current transport is higher close to the channel and lower in the center regions. The hydrogen concentrations went down significantly at the outlet due to uniform consumption of hydrogen throughout the porous electrode. A nonuniform oxygen concentration pattern was observed within the HTPEMFC due to non-homogeneous transport and consumption of oxygen from inlet to the outlet. The water vapor concentration is higher at the outlet, since more water vapor production through increased electro-chemical reactions, as the reactants transported from inlet to the outlet. The 3D model simulation results will be advantageous for further diagnostic analysis of the HTPEMFC systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Three-dimensional simulation of polymer electrolyte membrane fuel cells with experimental validation
    Fink, Clemens
    Fouquet, Nicolas
    ELECTROCHIMICA ACTA, 2011, 56 (28) : 10820 - 10831
  • [22] Effects of Cracks on the Mass Transfer of Polymer Electrolyte Membrane Fuel Cell with High Performance Membrane Electrode Assembly
    Jinrong Shi
    Zhigang Zhan
    Di Zhang
    Yuan Yu
    Xiaoxiang Yang
    Luyan He
    Mu Pan
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2021, 36 : 318 - 330
  • [23] Effects of Cracks on the Mass Transfer of Polymer Electrolyte Membrane Fuel Cell with High Performance Membrane Electrode Assembly
    施金蓉
    詹志刚
    ZHANG Di
    YU Yuan
    YANG Xiaoxiang
    HE Luyan
    PAN Mu
    Journal of Wuhan University of Technology(Materials Science), 2021, 36 (03) : 318 - 330
  • [24] Effects of Cracks on the Mass Transfer of Polymer Electrolyte Membrane Fuel Cell with High Performance Membrane Electrode Assembly
    Shi Jinrong
    Zhan Zhigang
    Zhang Di
    Yu Yuan
    Yang Xiaoxiang
    He Luyan
    Pan Mu
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2021, 36 (03): : 318 - 330
  • [25] Direct methanol fuel cell: Transport properties of polymer electrolyte membrane and cell performance
    Ren, X
    Springer, TE
    Gottesfeld, S
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON PROTON CONDUCTING MEMBRANE FUEL CELL II, 1999, 98 (27): : 341 - 357
  • [26] Impact of Thickness of Polymer Electrolyte Membrane and Gas Diffusion Layer on Temperature Distribution in Single Polymer Electrolyte Fuel Cell Operated at High Temperature
    Nishimura, Akira
    Kamiya, Satoru
    Okado, Tatsuya
    Yamamoto, Kouhei
    Hirota, Masafumi
    KAGAKU KOGAKU RONBUNSHU, 2019, 45 (06) : 227 - 237
  • [27] Upscaling the Production of High Temperature Polymer Electrolyte Membrane Fuel Cells - an Assessment of Reproducibility, Performance and Durability
    Bodner, M.
    Garcia, H. R.
    Steenberg, T.
    Vassiliev, A.
    Alfaro, S. M.
    Avcioglu, G. S.
    Hjuler, H. A.
    POLYMER ELECTROLYTE FUEL CELLS AND ELECTROLYZERS 18 (PEFC&E 18), 2018, 86 (13): : 281 - 285
  • [28] Mass transport in the cathode of a free-breathing polymer electrolyte membrane fuel cell
    T. Mennola
    M. Noponen
    M. Aronniemi
    T. Hottinen
    M. Mikkola
    O. Himanen
    P. Lund
    Journal of Applied Electrochemistry, 2003, 33 : 979 - 987
  • [29] Heat and Mass Transport Analysis of Polymer Electrolyte Membrane Fuel Cell with Bipolar Plates
    Konnepati, Pavan Kumar
    Majumdar, Pradip
    HT2009: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE 2009, VOL 2, 2009, : 979 - 996
  • [30] Mass transport in the cathode of a free-breathing polymer electrolyte membrane fuel cell
    Mennola, T. (tuomas.mennola@hut.fi), 1600, Kluwer Academic Publishers (33):