Non-Equilibrium Quantum Electrodynamics in Open Systems as a Realizable Representation of Quantum Field Theory of the Brain

被引:5
|
作者
Nishiyama, Akihiro [1 ]
Tanaka, Shigenori [1 ]
Tuszynski, Jack A. [2 ,3 ,4 ]
机构
[1] Kobe Univ, Grad Sch Syst Informat, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
[2] Univ Alberta, Cross Canc Inst, Dept Oncol, Edmonton, AB T6G 1Z2, Canada
[3] Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada
[4] Politecn Torino, DIMEAS, Corso Duca Abruzzi 24, I-10129 Turin, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
non-equilibrium quantum field theory; open systems; quantum electrodynamics; brain dynamics; LONG-RANGE COHERENCE; MANY-PARTICLE POINT; ENTROPY PRODUCTION; CONSERVATION-LAWS; BOSE-CONDENSATION; GAUGE; TRANSPORT; MEMORY; FORCES;
D O I
10.3390/e22010043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive time evolution equations, namely the Klein-Gordon equations for coherent fields and the Kadanoff-Baym equations in quantum electrodynamics (QED) for open systems (with a central region and two reservoirs) as a practical model of quantum field theory of the brain. Next, we introduce a kinetic entropy current and show the H-theorem in the Hartree-Fock approximation with the leading-order (LO) tunneling variable expansion in the 1st order approximation for the gradient expansion. Finally, we find the total conserved energy and the potential energy for time evolution equations in a spatially homogeneous system. We derive the Josephson current due to quantum tunneling between neighbouring regions by starting with the two-particle irreducible effective action technique. As an example of potential applications, we can analyze microtubules coupled to a water battery surrounded by a biochemical energy supply. Our approach can be also applied to the information transfer between two coherent regions via microtubules or that in networks (the central region and the Nres reservoirs) with the presence of quantum tunneling.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Quantum retrodiction in non-equilibrium thermo Field dynamics
    Ban, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (01) : 189 - 197
  • [32] Non-equilibrium dynamics of a scalar field with quantum backreaction
    Kimmo Kainulainen
    Olli Koskivaara
    Journal of High Energy Physics, 2021
  • [33] Non-equilibrium dynamics of a scalar field with quantum backreaction
    Kainulainen, Kimmo
    Koskivaara, Olli
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (12)
  • [34] Characterizing the Non-equilibrium Dynamics of Field-Driven Correlated Quantum Systems
    Fotso, Herbert F.
    Freericks, James K.
    FRONTIERS IN PHYSICS, 2020, 8
  • [35] Non-equilibrium quantum transport theory: current and gain in quantum cascade lasers
    Kubis, Tillmann
    Yeh, Catherine
    Vogl, Peter
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2008, 7 (03) : 432 - 435
  • [36] Non-equilibrium quantum transport theory: current and gain in quantum cascade lasers
    Tillmann Kubis
    Catherine Yeh
    Peter Vogl
    Journal of Computational Electronics, 2008, 7 : 432 - 435
  • [37] Stochastic approach to non-equilibrium quantum spin systems
    De Nicola, S.
    Doyon, B.
    Bhaseen, M. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (05)
  • [38] Entanglement and thermodynamics in non-equilibrium isolated quantum systems
    Calabrese, Pasquale
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 504 : 31 - 44
  • [39] Non-equilibrium statistical mechanics of classical and quantum systems
    Kusnezov, D
    Lutz, E
    Aoki, K
    DYNAMICS OF DISSIPATION, 2002, 597 : 83 - 108
  • [40] Prethermalization of quantum systems interacting with non-equilibrium environments
    Angles-Castillo, Andreu
    Banuls, Mari Carmen
    Perez, Armando
    De Vega, Ines
    NEW JOURNAL OF PHYSICS, 2020, 22 (08):