On the existence of triangles in random key graphs

被引:4
|
作者
Yagan, Osman [1 ]
Makowski, Armand M. [1 ]
机构
[1] Univ Maryland, Dept Elect & Comp Engn, Inst Syst Res, College Pk, MD 20742 USA
关键词
D O I
10.1109/ALLERTON.2009.5394489
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Random key graphs are random graphs induced by the random key predistribution scheme of Eschenauer and Gligor under the assumption of full visibility. For this class of random graphs we show the existence of a zero-one law for the appearance of triangles, and identify the corresponding critical scaling. This is done by applying the method of first and second moments to the number of triangles in the graph.
引用
收藏
页码:1567 / +
页数:2
相关论文
共 50 条
  • [21] RANDOM TRIANGLES
    WHITTAKER, J
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (03): : 228 - 230
  • [22] On the existence of ordinary triangles
    Fulek, Radoslav
    Mojarrad, Hossein Nassajian
    Naszodi, Marton
    Solymosi, Jozsef
    Stich, Sebastian U.
    Szedlak, May
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2017, 66 : 28 - 31
  • [23] On triangles in derangement graphs
    Meagher, Karen
    Razafimahatratra, Andriaherimanana Sarobidy
    Spiga, Pablo
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 180
  • [24] A CONJECTURE ON TRIANGLES OF GRAPHS
    TUZA, Z
    [J]. GRAPHS AND COMBINATORICS, 1990, 6 (04) : 373 - 380
  • [25] Eigenvalues and triangles in graphs
    Lin, Huiqiu
    Ning, Bo
    Wu, Baoyindureng
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 258 - 270
  • [26] Algorithmic Decorrelation and Planted Clique in Dependent Random Graphs: The Case of Extra Triangles
    Bresler, Guy
    Guo, Chenghao
    Polyanskiy, Yury
    [J]. 2023 IEEE 64TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, FOCS, 2023, : 2149 - 2158
  • [27] Upper Tail Behavior of the Number of Triangles in Random Graphs with Constant Average Degree
    Ganguly, Shirshendu
    Hiesmayr, Ella
    Nam, Kyeongsik
    [J]. COMBINATORICA, 2024, 44 (04) : 699 - 740
  • [28] Random key graphs - Can they be small worlds?
    Yagan, Osman
    Makowski, Armand M.
    [J]. 2009 FIRST INTERNATIONAL CONFERENCE ON NETWORKS & COMMUNICATIONS (NETCOM 2009), 2009, : 313 - +
  • [29] Critical Behavior in Heterogeneous Random Key Graphs
    Zhao, Jun
    [J]. 2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 868 - 872
  • [30] Zero-One Law for Connectivity in Superposition of Random Key Graphs on Random Geometric Graphs
    Tang, Y.
    Li, Q. L.
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015