GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models

被引:0
|
作者
Gollini, Isabella [1 ]
Lu, Binbin [2 ]
Charlton, Martin [3 ]
Brunsdon, Christopher [3 ]
Harris, Paul
机构
[1] Univ Bristol, Dept Civil Engn, Bristol BS8 1TR, Avon, England
[2] Wuhan Univ, Wuhan, Peoples R China
[3] NUI Maynooth, Maynooth, Kildare, Ireland
来源
JOURNAL OF STATISTICAL SOFTWARE | 2015年 / 63卷 / 17期
基金
爱尔兰科学基金会;
关键词
geographically weighted regression; geographically weighted principal components analysis; spatial prediction; robust; R package; VARYING COEFFICIENT MODELS; REGRESSION; SELECTION; PRICES; TESTS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Spatial statistics is a growing discipline providing important analytical techniques in a wide range of disciplines in the natural and social sciences. In the R package GWmodel, we present techniques from a particular branch of spatial statistics, termed geographically weighted (GW) models. GW models suit situations when data are not described well by some global model, but where there are spatial regions where a suitably localized calibration provides a better description. The approach uses a moving window weighting technique, where localized models are found at target locations. Outputs are mapped to provide a useful exploratory tool into the nature of the data spatial heterogeneity. Currently, GWmodel includes functions for: GW summary statistics, GW principal components analysis, GW regression, and GW discriminant analysis; some of which are provided in basic and robust forms.
引用
收藏
页码:1 / 50
页数:50
相关论文
共 50 条
  • [41] Spatial heterogeneity and predictors of stunting among under five children in Mozambique: a geographically weighted regression
    Tamir, Tadesse Tarik
    Tekeba, Berhan
    Mekonen, Enyew Getaneh
    Zegeye, Alebachew Ferede
    Gebrehana, Deresse Abebe
    FRONTIERS IN PUBLIC HEALTH, 2024, 12
  • [42] Weighted Cox Regression Using the R Package coxphw
    Dunkler, Daniela
    Ploner, Meinhard
    Schemper, Michael
    Heinze, Georg
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 84 (02): : 1 - 26
  • [43] Clustering spatial functional data using a geographically weighted Dirichlet process
    Pan, Tianyu
    Shen, Weining
    Hu, Guanyu
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (03): : 696 - 712
  • [44] SPATIAL MODELLING OF POPULATION CONCENTRATION USING GEOGRAPHICALLY WEIGHTED REGRESSION METHOD
    Bajat, Branislav
    Krunic, Nikola
    Kilibarda, Milan
    Samardzic-Petrovic, Mileva
    JOURNAL OF THE GEOGRAPHICAL INSTITUTE JOVAN CVIJIC SASA, 2011, 61 (03): : 151 - 167
  • [45] Multivariate Spatial Outlier Detection Using Robust Geographically Weighted Methods
    Paul Harris
    Chris Brunsdon
    Martin Charlton
    Steve Juggins
    Annemarie Clarke
    Mathematical Geosciences, 2014, 46 : 1 - 31
  • [47] Multivariate Spatial Outlier Detection Using Robust Geographically Weighted Methods
    Harris, Paul
    Brunsdon, Chris
    Charlton, Martin
    Juggins, Steve
    Clarke, Annemarie
    MATHEMATICAL GEOSCIENCES, 2014, 46 (01) : 1 - 31
  • [48] The Factors Influencing China's Population Distribution and Spatial Heterogeneity: a Prefectural-Level Analysis using Geographically Weighted Regression
    Xu, Zhibin
    Ouyang, Anjiao
    APPLIED SPATIAL ANALYSIS AND POLICY, 2018, 11 (03) : 465 - 480
  • [49] The Factors Influencing China’s Population Distribution and Spatial Heterogeneity: a Prefectural-Level Analysis using Geographically Weighted Regression
    Zhibin Xu
    Anjiao Ouyang
    Applied Spatial Analysis and Policy, 2018, 11 : 465 - 480
  • [50] Exploring spatial variation and spatial relationships in a freshwater acidification critical load data set for Great Britain using geographically weighted summary statistics
    Harris, Paul
    Brunsdon, Chris
    COMPUTERS & GEOSCIENCES, 2010, 36 (01) : 54 - 70