Spherical Triboelectric Nanogenerator with Dense Point Contacts for Harvesting Multidirectional Water Wave and Vibration Energy

被引:62
|
作者
Yuan, Zuqing [1 ]
Wang, Chunfeng [1 ,2 ]
Xi, Jianguo [2 ]
Han, Xun [1 ,2 ]
Li, Jing [2 ]
Han, Su-Ting [1 ]
Gao, Wenchao [3 ]
Pan, Caofeng [2 ,4 ]
机构
[1] Shenzhen Univ, Inst Microscale Optoelect, Shenzhen 518060, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing Key Lab Micronano Energy & Sensor, Beijing 100083, Peoples R China
[3] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia
[4] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROMAGNETIC GENERATOR; WIND ENERGY; SENSOR; ELECTRIFICATION; ARRAY;
D O I
10.1021/acsenergylett.1c01092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ocean wave energy is one of the most renewable energy sources. In this work, a spherical triboelectric nanogenerator (TENG) with dense point contacts can harvest water wave and vibration energy. Such spherical TENG consists of multiunits made of polyacrylate balls and thin fluorinated ethylene propylene films. The utilization of small polyacrylate balls enlarges the frequency of point contacts to enhance the contact efficiency and provides appropriate mechanical space to increase the volume power density. The spherical TENG transfer charges increased from about 21 nC to 820 nC with 1 to 15 units connected in parallel in the shell. The spherical TENG achieved a volume power density of 6.9 W m(-3) at 0.8 Hz and 20.57 W m(-3) at 5.9 Hz. Therefore, the spherical TENG provides a potential approach toward large-scale wave energy harvesting.
引用
收藏
页码:2809 / 2816
页数:8
相关论文
共 50 条
  • [41] Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range
    Yang, Xiya
    Chan, Szeyan
    Wang, Lingyun
    Daoud, Walid A.
    NANO ENERGY, 2018, 44 : 388 - 398
  • [42] Embroidery Triboelectric Nanogenerator for Energy Harvesting
    Tahir, Hasan Riaz
    Malengier, Benny
    Sujan, Sanaul
    Van Langenhove, Lieva
    SENSORS, 2024, 24 (12)
  • [43] Whirling-Folded Triboelectric Nanogenerator with High Average Power for Water Wave Energy Harvesting
    An, Jie
    Wang, Zi Ming
    Jiang, Tao
    Liang, Xi
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (39)
  • [44] Triboelectric Nanogenerator Network Integrated with Charge Excitation Circuit for Effective Water Wave Energy Harvesting
    Liang, Xi
    Jiang, Tao
    Feng, Yawei
    Lu, Pinjing
    An, Jie
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2020, 10 (40)
  • [45] Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
    Cheng, Ping
    Guo, Hengyu
    Wen, Zhen
    Zhang, Chunlei
    Yin, Xing
    Li, Xinyuan
    Liu, Di
    Song, Weixing
    Sun, Xuhui
    Wang, Jie
    Wang, Zhong Lin
    NANO ENERGY, 2019, 57 : 432 - 439
  • [46] Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: An overview
    Huang, Bin
    Wang, Pengzhong
    Wang, Lu
    Yang, Shuai
    Wu, Dazhuan
    NANOTECHNOLOGY REVIEWS, 2020, 9 (01) : 716 - 735
  • [47] High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
    Xi, Yi
    Wang, Jie
    Zi, Yunlong
    Li, Xiaogan
    Han, Changbao
    Cao, Xia
    Hu, Chenguo
    Wang, Zhonglin
    NANO ENERGY, 2017, 38 : 101 - 108
  • [48] Triboelectric Nanogenerator for Ocean Wave Graded Energy Harvesting and Condition Monitoring
    Xu, Yuhong
    Yang, Weixiong
    Lu, Xiaohui
    Yang, Yanfei
    Li, Jianping
    Wen, Jianming
    Cheng, Tinghai
    Wang, Zhong Lin
    ACS NANO, 2021, 15 (10) : 16368 - 16375
  • [49] Systematic literature review of wave energy harvesting using triboelectric nanogenerator
    Salman, Mohamed
    Sorokin, Vladislav
    Aw, Kean
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 201
  • [50] Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator
    Chen, Jun
    Wang, Zhong Lin
    JOULE, 2017, 1 (03) : 480 - 521