Role of interfaces in organic-inorganic flexible thermoelectrics

被引:43
|
作者
Liu, Chan [1 ]
Shan, Dong-Liang [2 ]
Shen, Zhong-Hui [1 ]
Ren, Guang-Kun [3 ]
Wang, Yue [1 ]
Zhou, Zhi-Fang [1 ]
Li, Jiang-Yu [2 ]
Yi, Di [1 ]
Lan, Jin-Le [4 ]
Chen, Long-Qing [5 ]
Snyder, G. Jeffery [6 ]
Lin, Yuan-Hua [1 ]
Nan, Ce-Wen [1 ]
机构
[1] Tsinghua Univ, State Key Lab New Ceram & Fine Proc, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] China Acad Engn Phys, Inst Mat, Jiangyou 621908, Sichuan, Peoples R China
[4] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[5] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[6] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Flexible thermoelectric nanocomposites; Interface; Highly conductive layer; Low thermal conductivity; THERMAL-CONDUCTIVITY; HEAT-TRANSFER; TRANSPORT; FILMS; NANOCOMPOSITES; COMPOSITES; SCATTERING;
D O I
10.1016/j.nanoen.2021.106380
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interface is always a critical factor affecting thermoelectric performance in composite systems. However, understanding the electrical and thermal transport behaviors at the interfaces has been a long-standing challenge. Here, we advance this understanding by using spatially resolved current and thermal measurements in single wall carbon nanotubes (CNTs)-Tellurium-poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS) nanocomposites. Our results indicate that the obtained ultra-low thermal conductivity in such nanocomposites with high CNTs content can be understood by the interface thermal resistance and interface density of the clusters, which is directly confirmed by quantitative mappings of thermal conductivity in the micro-scale interface regions via scanning thermal microscopy. Furthermore, the highly conductive layers can be formed at the interfaces of Te PEDOT:PSS and CNTs PEDOT:PSS revealed by high-resolution local conductivity and topography mapping, leading to simultaneous enhancement of electrical conductivity and Seebeck coefficient. Ultimately, a power factor of 224 mu W/mK(2), as well as an ultralow in-plane thermal conductivity of 0.39 W/mK at 410 K, has been achieved by tuning carrier mobility and phonon scattering using multiple polymer inorganic interfaces. The ZT value reaches up to 0.24 at 410 K and a planar flexible thermoelectric generator exhibits excellent output power of 1.33 mu W and highly competitive normalized maximum power density of 0.26 W/m at a temperature difference of 67.8 K These approaches give deep insights to understand the interface role in nanocomposites, and also attests to the great potential of using such organic-inorganic composites in wearable electronics.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Flexible organic-inorganic hybrid bioceramic for bone tissue regeneration
    Chen, Jing
    Zhang, Xingmei
    Li, Beibei
    Yang, Yawei
    JOURNAL OF ADVANCED DIELECTRICS, 2020, 10 (04)
  • [32] Organic-inorganic hybrid materials for flexible optical waveguide applications
    Kwon, Yong Ku
    Han, Jae Kook
    Lee, Jong Min
    Ko, Yoon Soo
    Oh, Ju Hyun
    Lee, Hyun-Shik
    Lee, El-Hang
    JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (05) : 579 - 585
  • [33] Organic-inorganic nanohybrid nonvolatile memory transistors for flexible electronics
    Han, Kyu Seok
    Park, Yerok
    Han, Gibok
    Lee, Byoung Hoon
    Lee, Kwang Hyun
    Son, Dong Hee
    Im, Seongil
    Sung, Myung Mo
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (36) : 19007 - 19013
  • [34] Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth
    Gordon, Lyle M.
    Joester, Derk
    NATURE, 2011, 469 (7329) : 194 - 197
  • [35] Enhancing heterogeneous catalysis through cooperative hybrid organic-inorganic interfaces
    Notestein, Justin M.
    Katz, Alexander
    CHEMISTRY-A EUROPEAN JOURNAL, 2006, 12 (15) : 3954 - 3965
  • [36] Organic-Inorganic Hybrid Interfaces for Spin Injection into Carbon Nanotubes and Graphene
    Martin, Pascal
    Dlubak, Bruno
    Seneor, Pierre
    Mattana, Richard
    Martin, Marie-Blandine
    Lafarge, Philippe
    Mallet, Francois
    Della Rocca, Maria Luisa
    Dubois, Simon M-M
    Charlier, Jean-Christophe
    Barraud, Clement
    ADVANCED QUANTUM TECHNOLOGIES, 2022, 5 (06)
  • [37] Understanding and Controlling Organic-Inorganic Interfaces in Mesostructured Hybrid Photovoltaic Materials
    Neyshtadt, S.
    Jahnke, J. P.
    Messinger, R. J.
    Rawal, A.
    Peretz, T. Segal
    Huppert, D.
    Chmelka, B. F.
    Frey, G. L.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (26) : 10119 - 10133
  • [38] Transport and optical gaps and energy band alignment at organic-inorganic interfaces
    Evans, D. A.
    Vearey-Roberts, A. R.
    Roberts, O. R.
    Williams, G. T.
    Cooil, S. P.
    Langstaff, D. P.
    Cabailh, G.
    McGovern, I. T.
    Goss, J. P.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (12)
  • [39] Flexible Thermoelectrics Based on Plastic Inorganic Semiconductors
    Chen, Kang
    Wang, Longlu
    Luo, Zhongzhong
    Xu, Xiuwen
    Li, Yang
    Liu, Shujuan
    Zhao, Qiang
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (16)
  • [40] Organic-inorganic interfaces: Principles of quasi-epitaxy of a molecular semiconductor on inorganic compound semiconductors
    Kendrick, C.
    Kahn, A.
    Applied Surface Science, 1998, 123-124 : 405 - 411