A case study by using Python']Python to implement data and dimensionality reduction

被引:0
|
作者
Huang Chih-Chien [1 ]
Hsu Chung-Chian [1 ]
Wang Suefen [2 ]
Pon YuShun [3 ]
Liao WenWei [3 ]
机构
[1] Natl Yunlin Univ Sci & Technol, Dept Informat Management, Touliu, Yunlin, Taiwan
[2] Hwa Kang Xing Ye Fdn, Social & Data Sci Res Ctr, Taipei, Taiwan
[3] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
关键词
MDS; PCA; LDA; Dimension Reduction;
D O I
10.1109/ICCECE51280.2021.9342094
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of this study is to research and explore the Data Dimension, and propose the data feature & selection of dimensionality reduction technique, in order to help users understand the impact and meaning between dimensionality reduction parameters and data dimension, thereby strengthening the use of dimension reduction algorithm. In previous studies, mans scholars have proposed dimensionality reduction algorithms for ariints data types, such as Multi Dimensional Scaling (MDS), Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA), Facet Analysis (FA), Isometric Feature Maps (Isomap, using for manifold analysis), Local Linear Embedding (LLE), and Laplacian feature mops (Laplacian Eigenmaps). Most of these algorithms do not need to set parameters, and it has been obtained during the experiment that the selection of parameters has no visual analysis effect MI the dataset in this experiment, and should be determined according iii the feature of the datuset. This study is conducted by comparing the most used PCA and LDA dimensionality reduction techniques, as well as the analysis of merging other similarity methods while using MDS to process mixed data.
引用
收藏
页码:276 / 286
页数:11
相关论文
共 50 条
  • [1] pyDRMetrics - A Python']Python toolkit for dimensionality reduction quality assessment
    Zhang, Yinsheng
    Shang, Qian
    Zhang, Guoming
    [J]. HELIYON, 2021, 7 (02)
  • [2] NICI Python']Python Data Reduction
    Zarate, Nelson
    Artigua, Etienne
    Hartung, Markus
    Labrie, Kathleen
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XIX, 2010, 434 : 481 - +
  • [3] ZADU: A Python']Python Library for Evaluating the Reliability of Dimensionality Reduction Embeddings
    Jeon, Hyeon
    Cho, Aeri
    Jang, Jinhwa
    Lee, Soohyun
    Hyun, Jake
    Ko, Hyung-Kwon
    Jo, Jaemin
    Seo, Jinwook
    [J]. 2023 IEEE VISUALIZATION AND VISUAL ANALYTICS, VIS, 2023, : 196 - 200
  • [4] PySEF: A python']python library for similarity-based dimensionality reduction
    Passalis, Nikolaos
    Tefas, Anastasios
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 152 : 186 - 187
  • [5] MRMD3.0: A Python']Python Tool and Webserver for Dimensionality Reduction and Data Visualization via an Ensemble Strategy
    He, Shida
    Ye, Xiucai
    Sakurai, Tetsuya
    Zou, Quan
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (14)
  • [6] openTSNE: A Modular Python']Python Library for t-SNE Dimensionality Reduction and Embedding
    Policar, Pavlin G.
    Strazar, Martin
    Zupan, Blaz
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2024, 109 (03): : 1 - 30
  • [7] A Study on Using Python']Python vs Weka on Dialysis Data Analysis
    Mitrpanont, Jarernsri
    Sawangphol, Wudhichart
    Vithantirawat, Thanita
    Paengkaew, Sinattaya
    Suwannasing, Prameyuda
    Daramas, Atthapan
    Chen, Yi-Cheng
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (INCIT), 2017, : 123 - 128
  • [8] Geophysical data analysis using Python']Python
    Sáenz, J
    Zubillaga, J
    Fernández, J
    [J]. COMPUTERS & GEOSCIENCES, 2002, 28 (04) : 457 - 465
  • [9] direpack: A Python']Python 3 package for state-of-the-art statistical dimensionality reduction methods
    Menvouta, Emmanuel Jordy
    Serneels, Sven
    Verdonck, Tim
    [J]. SOFTWAREX, 2023, 21
  • [10] Design and Implement Automated Procedure to Upgrade Remote Network Devices Using Python']Python
    Jambunatha, K.
    [J]. 2015 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2015, : 217 - 221