openTSNE: A Modular Python']Python Library for t-SNE Dimensionality Reduction and Embedding

被引:2
|
作者
Policar, Pavlin G. [1 ,3 ]
Strazar, Martin [2 ]
Zupan, Blaz [1 ]
机构
[1] Univ Ljubljana, Ljubljana, Slovenia
[2] Broad Inst, Cambridge, MA USA
[3] Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana, Slovenia
来源
JOURNAL OF STATISTICAL SOFTWARE | 2024年 / 109卷 / 03期
关键词
t-SNE; embedding; visualization; dimensionality reduction; !text type='Python']Python[!/text;
D O I
10.18637/jss.v109.i03
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
One of the most popular techniques for visualizing large, high-dimensional data sets is t -distributed stochastic neighbor embedding (t -SNE). Recently, several extensions have been proposed to address scalability issues and the quality of the resulting visualizations. We introduce openTSNE , a modular Python library that implements the core t -SNE algorithm and its many extensions. The library is faster than existing implementations and can compute projections of data sets containing millions of data points in minutes.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 50 条
  • [1] ZADU: A Python']Python Library for Evaluating the Reliability of Dimensionality Reduction Embeddings
    Jeon, Hyeon
    Cho, Aeri
    Jang, Jinhwa
    Lee, Soohyun
    Hyun, Jake
    Ko, Hyung-Kwon
    Jo, Jaemin
    Seo, Jinwook
    [J]. 2023 IEEE VISUALIZATION AND VISUAL ANALYTICS, VIS, 2023, : 196 - 200
  • [2] PySEF: A python']python library for similarity-based dimensionality reduction
    Passalis, Nikolaos
    Tefas, Anastasios
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 152 : 186 - 187
  • [3] Dimensionality Reduction via Dynamical Systems: The Case of t-SNE
    Linderman, George C.
    Steinerberger, Stefan
    [J]. SIAM REVIEW, 2022, 64 (01) : 153 - 178
  • [4] Parametric nonlinear dimensionality reduction using kernel t-SNE
    Gisbrecht, Andrej
    Schulz, Alexander
    Hammer, Barbara
    [J]. NEUROCOMPUTING, 2015, 147 : 71 - 82
  • [5] S plus t-SNE - Bringing Dimensionality Reduction to Data Streams
    Vieira, Pedro C.
    Montrezol, Joao P.
    Vieira, Joao T.
    Gama, Joao
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS XXII, PT II, IDA 2024, 2024, 14642 : 95 - 106
  • [6] Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE
    Devassy, Binu Melit
    George, Sony
    [J]. FORENSIC SCIENCE INTERNATIONAL, 2020, 311
  • [7] ENS-t-SNE: Embedding Neighborhoods Simultaneously t-SNE
    Miller, Jacob
    Huroyan, Vahan
    Navarrete, Raymundo
    Hossain, Md Iqbal
    Kobourov, Stephen
    [J]. 2024 IEEE 17TH PACIFIC VISUALIZATION CONFERENCE, PACIFICVIS, 2024, : 222 - 231
  • [8] pyDRMetrics - A Python']Python toolkit for dimensionality reduction quality assessment
    Zhang, Yinsheng
    Shang, Qian
    Zhang, Guoming
    [J]. HELIYON, 2021, 7 (02)
  • [9] Linear basis-function t-SNE for fast nonlinear dimensionality reduction
    Gisbrecht, A.
    Mokbel, B.
    Hammer, B.
    [J]. 2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [10] A case study by using Python']Python to implement data and dimensionality reduction
    Huang Chih-Chien
    Hsu Chung-Chian
    Wang Suefen
    Pon YuShun
    Liao WenWei
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 276 - 286