Generation of ETV5 Knockout Pigs with CRISPR/Cas9

被引:0
|
作者
Zhang, Mao [1 ]
Cai, Gengyuan [2 ]
Zhou, Rong [3 ]
Yang, Huaqiang [2 ]
机构
[1] Shaoguan Univ, Henry Fok Coll Biol & Agr, Shaoguan 512005, Peoples R China
[2] South China Agr Univ, Coll Anim Sci, Natl Engn Res Ctr Breeding Swine Ind, Guangzhou 510642, Peoples R China
[3] Wens Foodstuff Grp Co Ltd, Yunfu 527400, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR/Cas9; ETV5; Pig; SSCs; TESTIS; CELLS;
D O I
10.18805/IJAR.B-1327
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Background: Ets variant factor 5 (ETV5) plays an important regulatory role in mouse spermatogonial stem cells (SSCs) self-renewal. ETV5 knockout (KO) mice exhibit a progressive loss of SSCs and resulting in a sertoli cell-only phenotype. The current study was aimed to use gene editing technology to obtain ETV5-KO pigs as a model for studying the apoptosis mechanism of SSCs and further clarify the function of ETV5 gene in pigs. Methods: A gene editing plasmid for the porcine ETV5 gene was constructed, transfected into porcine fetal fibroblasts by electroporation to obtain ETV5-KO cells. ETV5-KO cells were used as donors to prepare ETV5-KO pigs by somatic cell nuclear transfer (SCNT). Testis tissues were collected for hematoxylin and eosin (HE), immunohistochemistry ( IHC), RT- PCR testing and blood for ELISA testing from ETV5-KO pig. Result: In the present study, we used the CRISPR/Cas9 system and SCNT to genrate homozygous ETV5-KO pigs. We observed 3 phenotypes in these pigs: normal testis development after birth, the SSCs in the seminiferous tubules did not show obviously extinction at sexual maturity and normal spermatogenesis.
引用
下载
收藏
页码:999 / 1004
页数:6
相关论文
共 50 条
  • [21] Generation of SMURF2 knockout human cells using the CRISPR/Cas9 system
    Ayyathan, Dhanoop Manikoth
    Ilic, Nata
    Gil-Henn, Hava
    Blank, Michael
    ANALYTICAL BIOCHEMISTRY, 2017, 531 : 56 - 59
  • [22] Rapid Generation of Long Noncoding RNA Knockout Mice Using CRISPR/Cas9 Technology
    Hansmeier, Nils R.
    Widdershooven, Pia J. M.
    Khani, Sajjad
    Kornfeld, Jan-Wilhelm
    NON-CODING RNA, 2019, 5 (01)
  • [23] Generation of an Inducible Avp Knockout Mouse Line Using CRISPR/Cas9 and Cre/LoxP
    Khan, Shaza
    Chen, Lihe
    Khundmiri, Syed
    Chou, Chung-Lin
    Knepper, M. A.
    PHYSIOLOGY, 2024, 39
  • [24] Cathepsin D knockout in CHO cells using CRISPR/Cas9
    Baik, Jong Youn
    Lee, Kelvin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [25] Production of gene knockout fish using TALEN and CRISPR/Cas9
    Suzuki, Tohru
    NIPPON SUISAN GAKKAISHI, 2015, 81 (05) : 884 - 884
  • [26] Utilizing CRISPR/Cas9 technology to knockout Juno in the pig genome
    Zacanti, K.
    Ross, P. J.
    Berger, T.
    TRANSGENIC RESEARCH, 2018, 27 (05) : 480 - 480
  • [27] Knockout of von Willebrand factor in Zebrafish by CRISPR/Cas9 mutagenesis
    Iyer, Neha
    Tcheuyap, Vanina T.
    Schneider, Sara
    Marshall, Vanessa
    Jagadeeswaran, Pudur
    BRITISH JOURNAL OF HAEMATOLOGY, 2019, 186 (04) : E76 - E80
  • [28] Efficient Gene Knockout in Goats Using CRISPR/Cas9 System
    Ni, Wei
    Qiao, Jun
    Hu, Shengwei
    Zhao, Xinxia
    Regouski, Misha
    Yang, Min
    Polejaeva, Irina A.
    Chen, Chuangfu
    PLOS ONE, 2014, 9 (09):
  • [29] Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9
    Zheng, Jun
    Jia, Honglin
    Zheng, Yonghui
    INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2015, 45 (2-3) : 141 - 148
  • [30] Generation of a heterozygous SCN5A knockout human induced pluripotent stem cell line by CRISPR/Cas9 edition
    Gizon, Marie
    Duboscq-Bidot, Laetitia
    El Kassar, Lina
    Bobin, Pierre
    Ader, Flavie
    Giraud-Triboult, Karine
    Charron, Philippe
    Villard, Eric
    Fontaine, Vincent
    Neyroud, Nathalie
    STEM CELL RESEARCH, 2022, 60