A framework for quality evaluation in data integration systems

被引:0
|
作者
Akoka, J. [1 ]
Berti-Equille, L. [3 ]
Boucelma, O. [4 ]
Bouzeghoub, M. [5 ]
Comyn-Wattiau, I. [1 ,2 ]
Cosquer, M. [7 ]
Goasdoue-Thion, V. [6 ]
Kedad, Z. [5 ]
Nugier, S. [6 ]
Peralta, V. [5 ]
Sisaid-Cherfi, S. [1 ]
机构
[1] CNAM CEDRIC, Paris, France
[2] ESSEC, Paris, France
[3] Univ Rennes 1, IRISA, Rennes, France
[4] Univ Aix Marseille, LSIS, Aix En Provence, France
[5] Univ Versailles, PRISM, Versailles, France
[6] EDF R&D, Clamart, France
[7] Inst Curie, Paris, France
关键词
data quality; quality meta-model; data integration systems;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ensuring and maximizing the quality and integrity of information is a crucial process for today enterprise information systems (EIS). It requires a clear understanding of the interdependencies between the dimensions characterizing quality of data (QoD), quality of conceptual data model (QoM) of the database, keystone of the EIS, and quality of data management and integration processes (QoP). The improvement of one quality dimension (such as data accuracy or model expressiveness) may have negative consequences on other quality dimensions (e.g., freshness or completeness of data). In this paper we briefly present a framework, called QUADRIS, relevant for adopting a quality improvement strategy on one or many dimensions of QoD or QoM with considering the collateral effects on the other interdependent quality dimensions. We also present the scenarios of our ongoing validations on a CRM EIS.
引用
下载
收藏
页码:170 / +
页数:2
相关论文
共 50 条
  • [41] Data measurement in research information systems: metrics for the evaluation of data quality
    Otmane Azeroual
    Gunter Saake
    Jürgen Wastl
    Scientometrics, 2018, 115 : 1271 - 1290
  • [42] Data measurement in research information systems: metrics for the evaluation of data quality
    Azeroual, Otmane
    Saake, Gunter
    Wastl, Jurgen
    SCIENTOMETRICS, 2018, 115 (03) : 1271 - 1290
  • [43] Surgical data strengthening in Ethiopia: results of a Kirkpatrick framework evaluation of a data quality intervention
    Bari, Sehrish
    Incorvia, Joseph
    Iverson, Katherine R.
    Bekele, Abebe
    Garringer, Kaya
    Ahearn, Olivia
    Drown, Laura
    Emiru, Amanu Aragaw
    Burssa, Daniel
    Workineh, Samson
    Sheferaw, Ephrem Daniel
    Meara, John G.
    Beyene, Andualem
    GLOBAL HEALTH ACTION, 2021, 14 (01)
  • [44] Improved Integration Between Engineering and Supply Chain Through a Data Quality and Governance Framework
    Sanders, Chris
    ADVANCES IN MANUFACTURING TECHNOLOGY XXXI, 2017, 6 : 458 - 463
  • [45] A Cloud Based Data Integration Framework
    Jiang, Nan
    Xu, Lai
    de Vrieze, Paul
    Lim, Mian-Guan
    Jarabo, Oscar
    COLLABORATIVE NETWORKS IN THE INTERNET OF SERVICES, 2012, 380 : 177 - +
  • [46] An Epidemiological Modeling and Data Integration Framework
    Pfeifer, B.
    Wurz, M.
    Hanser, F.
    Seger, M.
    Netzer, M.
    Osl, M.
    Modre-Osprian, R.
    Schreier, G.
    Baumgartner, C.
    METHODS OF INFORMATION IN MEDICINE, 2010, 49 (03) : 290 - 296
  • [47] A RESTful and semantic framework for data integration
    Fuentes-Lorenzo, Damaris
    Sanchez, Luis
    Cuadra, Antonio
    Cutanda, Mar
    SOFTWARE-PRACTICE & EXPERIENCE, 2015, 45 (09): : 1161 - 1188
  • [48] A Framework for the Data Integration of Earthquake Events
    Tian, Chuanzhao
    Li, Guoqing
    IEEE ACCESS, 2019, 7 : 172628 - 172637
  • [49] Ontology based framework for data integration
    Salguero, Alberto
    Araque, Francisco
    Delgado, Cecilia
    WSEAS Transactions on Information Science and Applications, 2008, 5 (06): : 953 - 962
  • [50] AN EPIDEMIOLOGIC MODELING AND DATA INTEGRATION FRAMEWORK
    Pfeifer, B.
    Seger, M.
    Netzer, M.
    Osl, M.
    Modre-Osprian, R.
    Schreier, G.
    Hanser, F.
    Baumgartner, C.
    EHEALTH2009 - MEDICAL INFORMATICS MEETS EHEALTH, 2009, : 33 - 39