This review addresses recent developments in structurally colored materials composed of submicrometer-sized fine particles, where the structural color is not angle-dependent. Recently, studies on colloidal crystals of submicrometer-sized fine particles for structurally colored materials applications have drawn great attention. Materials researchers have become aware that many living things exhibit bright structural colors that arise from amorphous arrays of particles, pores and fibers, and are now engaged in research related to this phenomenon. In particular, colloidal amorphous arrays composed of submicrometer-sized fine particles, which can display vivid structural color without angle dependence, have become a popular topic of study within recent years. In this paper, I review the possibility of using colloidal amorphous arrays as stimuli-responsive colored materials based on the properties of colloidal amorphous arrays that have been elucidated in recent experimental investigations.