Synthesis and characterization of β-cyclodextrin/carboxymethyl chitosan/hydroxyapatite fused with date seed extract nanocomposite scaffolds for regenerative bone tissue engineering

被引:10
|
作者
Jolly, Reshma [1 ]
Furkan, Mohammad [2 ]
Khan, Aijaz Ahmed [3 ]
Ahmed, Syed Sayeed [4 ]
Alam, Sharique [5 ]
Farooqi, Mohd Ahmadullah [6 ]
Khan, Rizwan Hasan [2 ]
Shakir, Mohammad [1 ]
机构
[1] AMU, Dept Chem, Inorgan Chem Lab, Aligarh 202002, Uttar Pradesh, India
[2] AMU, Interdisciplinary Biotechnol Unit, Aligarh 202002, Uttar Pradesh, India
[3] AMU, JN Med Coll, Dept Anat, Neuroanat Lab, Aligarh 202002, Uttar Pradesh, India
[4] AMU, Dr Ziauddin Ahmad Dent Coll, Dept Oral & Maxillofacial Surg, Aligarh 202002, Uttar Pradesh, India
[5] AMU, Dr Ziauddin Ahmad Dent Coll, Dept Conservat Dent & Endodont, Aligarh 202002, Uttar Pradesh, India
[6] Imam Abdulrahman Bin Faisal Univ, Coll Architecture & Planning, Dept Bldg Engn, Dammam 34221, Saudi Arabia
来源
MATERIALS ADVANCES | 2021年 / 2卷 / 17期
关键词
PHOENIX-DACTYLIFERA; IN-VITRO; CARBOXYMETHYL CHITOSAN; SILVER NANOPARTICLES; HYDROXYAPATITE; COMPOSITE; DELIVERY; CALCIUM; BIOCOMPATIBILITY; NANOENSEMBLE;
D O I
10.1039/d1ma00286d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, for the first time, heterojunctions containing nano-hydroxyapatite/carboxymethyl chitosan/beta-cyclodextrin fused with date seed extract (DSE) were synthesized at different concentrations using co-precipitation to generate BCHD1, BCHD2 and BCHD3 nanocomposite scaffolds with tunable size and amendable surface properties. FTIR, XRD and mechanical analysis studies confirmed the presence of different constituents in the proposed nanocomposite scaffolds displaying strong interactions with an optimal compressive modulus shown by BCHD3 [1533 +/- 2.69 MPa], relative to nano-hydroxyapatite/carboxymethyl chitosan (CH) nanocomposite scaffolds. The results of TEM, water contact angle and SEM revealed the homogenous distribution of needle-shaped particles having an average size ranging between 18 and 25 nm with a moderate hydrophilicity [WCA = 42.5 degrees] and an interconnected rough morphology. Furthermore, the BCHD nanocomposite scaffolds were investigated for their biomimetic mineralization ability using simulated body fluid by mimicking the inorganic composition of human blood plasma, which demonstrated superior hydroxyapatite nucleation. The BCHD3 nanocomposite scaffolds showed an advanced protein adsorption [130 +/- 41 mu g cm(-2)] and active alkaline phosphatase performance and did not exacerbate lactate dehydrogenase leakage of MG63 osteoblast-like cells relative to CH. The comprehensive in vivo study identified better bone regeneration in the repair of critical size calvarial defects [8 mm] in albino rats upon treatment with BCHD3, which is selectively tested as a bare implant in comparison to cerabone, as corroborated by the histopathological and radiological investigations with an average GBD of 94.5 +/- 1.24%. Therefore, the above-mentioned results have shed more light on establishing the efficiency of BCHD3 to find applications in osteogenic tissue engineering.
引用
收藏
页码:5723 / 5736
页数:14
相关论文
共 50 条
  • [21] Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering
    Venkatesan, Jayachandran
    Pallela, Ramjee
    Bhatnagar, Ira
    Kim, Se-Kwon
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 51 (05) : 1033 - 1042
  • [22] Bioactivity evaluation of novel nanocomposite scaffolds for bone tissue engineering: The impact of hydroxyapatite
    Saber-Samandari, Samaneh
    Saber-Samandari, Saeed
    Ghonjizade-Samani, Farnaz
    Aghazadeh, Jamshid
    Sadeghi, Ali
    CERAMICS INTERNATIONAL, 2016, 42 (09) : 11055 - 11062
  • [23] Hydrothermal fabrication of hydroxyapatite/chitosan/carbon porous scaffolds for bone tissue engineering
    Long, Teng
    Liu, Yu-Tai
    Tang, Sha
    Sun, Jin-Liang
    Guo, Ya-Ping
    Zhu, Zhen-An
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2014, 102 (08) : 1740 - 1748
  • [24] Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering
    Kim, Hye-Lee
    Jung, Gil-Yong
    Yoon, Jun-Ho
    Han, Jung-Suk
    Park, Yoon-Jeong
    Kim, Do-Gyoon
    Zhang, Miqin
    Kim, Dae-Joon
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 54 : 20 - 25
  • [25] Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering
    Lei, Yong
    Xu, Zhengliang
    Ke, Qinfei
    Yin, Wenjing
    Chen, Yixuan
    Zhang, Changqing
    Guo, Yaping
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 72 : 134 - 142
  • [26] Synthesis and characterization of chitosan–multiwalled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering
    Li Chen
    Jingxiao Hu
    Xinyu Shen
    Hua Tong
    Journal of Materials Science: Materials in Medicine, 2013, 24 : 1843 - 1851
  • [27] Chitosan-hydroxyapatite-MWCNTs nanocomposite patch for bone tissue engineering applications
    Sanchez, Alejandro Gomez
    Prokhorov, Evgen
    Luna-Barcenas, Gabriel
    Doval, R. Roman
    Mendoza, S.
    Rojas-Chavez, H.
    Vargas, Julia Hernandez
    MATERIALS TODAY COMMUNICATIONS, 2021, 28
  • [28] A novel gelatin/carboxymethyl chitosan/nano-hydroxyapatite/β-tricalcium phosphate biomimetic nanocomposite scaffold for bone tissue engineering applications
    Sun, Qiushuo
    Yu, Lu
    Zhang, Zhuocheng
    Qian, Cheng
    Fang, Hongzhe
    Wang, Jintao
    Wu, Peipei
    Zhu, Xiaojing
    Zhang, Jian
    Zhong, Liangjun
    He, Rui
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [29] Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications
    Nikpour, M. R.
    Rabiee, S. M.
    Jahanshahi, M.
    COMPOSITES PART B-ENGINEERING, 2012, 43 (04) : 1881 - 1886
  • [30] Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering
    Torabinejad, Bahman
    Mohammadi-Rovshandeh, Jamshid
    Davachi, Seyed Mohammad
    Zamanian, Ali
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 42 : 199 - 210