Kalman-Yakubovich-Popov: Do We Need a New Proof?

被引:0
|
作者
Sepulchre, Rodolphe
机构
来源
IEEE CONTROL SYSTEMS MAGAZINE | 2022年 / 42卷 / 04期
关键词
D O I
10.1109/MCS.2022.3171431
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:4 / 4
页数:1
相关论文
共 50 条
  • [1] On the Kalman-Yakubovich-Popov lemma
    Rantzer, A
    SYSTEMS & CONTROL LETTERS, 1996, 28 (01) : 7 - 10
  • [2] On Kalman-Yakubovich-Popov Lemma for stabilizable systems
    Collado, J
    Lozano, R
    Johansson, R
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (07) : 1089 - 1093
  • [3] The Kalman-Yakubovich-Popov Lemma in a behavioural framework
    van der Geest, R
    Trentelman, H
    SYSTEMS & CONTROL LETTERS, 1997, 32 (05) : 283 - 290
  • [4] On the Kalman-Yakubovich-Popov lemma and the multidimensional models
    Bachelier, Olivier
    Paszke, Wojciech
    Mehdi, Driss
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2008, 19 (3-4) : 425 - 447
  • [5] On the Kalman-Yakubovich-Popov Lemma for Positive Systems
    Rantzer, Anders
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 7482 - 7484
  • [6] The Kalman-Yakubovich-Popov Lemma in a behavioural framework
    Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
    不详
    Syst Control Lett, 5 (283-290):
  • [8] An alternative Kalman-Yakubovich-Popov lemma and some extensions
    Graham, Matthew R.
    de Oliveira, Mauricio C.
    de Callafon, Raymond A.
    AUTOMATICA, 2009, 45 (06) : 1489 - 1496
  • [9] Extension of Kalman-Yakubovich-Popov lemma to descriptor systems
    Camlibel, M. K.
    Frasca, R.
    SYSTEMS & CONTROL LETTERS, 2009, 58 (12) : 795 - 803
  • [10] A Kalman-Yakubovich-Popov Lemma with affine dependence on the frequency
    Graham, M. R.
    de Oliveira, M. C.
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 1086 - 1091