On the Kalman-Yakubovich-Popov lemma and the multidimensional models

被引:25
|
作者
Bachelier, Olivier [2 ]
Paszke, Wojciech [1 ]
Mehdi, Driss [2 ]
机构
[1] Eindhoven Univ Technol, Control Syst Technol Grp, NL-5600 MB Eindhoven, Netherlands
[2] Univ Poitiers, LAII, ESIP, F-86022 Poitiers, France
关键词
KYP lemma; hybrid n-D Roesser model; S-procedure; polynomial matrix partial derivative D-regularity; LMI;
D O I
10.1007/s11045-008-0055-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper focuses on Kalman-Yakubovich-Popov lemma for multidimensional systems described by Roesser model that possibly includes both continuous and discrete dynamics. It is shown that, similarly to the standard 1-D case, this lemma can be studied through the lens of S-procedure. Furthermore, by virtue of this lemma, we will examine robust stability, bounded and positive realness of multidimensional systems.
引用
收藏
页码:425 / 447
页数:23
相关论文
共 50 条
  • [1] On the Kalman-Yakubovich-Popov lemma
    Rantzer, A
    SYSTEMS & CONTROL LETTERS, 1996, 28 (01) : 7 - 10
  • [2] On the Kalman–Yakubovich–Popov lemma and the multidimensional models
    Olivier Bachelier
    Wojciech Paszke
    Driss Mehdi
    Multidimensional Systems and Signal Processing, 2008, 19 : 425 - 447
  • [3] On Kalman-Yakubovich-Popov Lemma for stabilizable systems
    Collado, J
    Lozano, R
    Johansson, R
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (07) : 1089 - 1093
  • [4] The Kalman-Yakubovich-Popov Lemma in a behavioural framework
    van der Geest, R
    Trentelman, H
    SYSTEMS & CONTROL LETTERS, 1997, 32 (05) : 283 - 290
  • [5] On the Kalman-Yakubovich-Popov Lemma for Positive Systems
    Rantzer, Anders
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 7482 - 7484
  • [6] The Kalman-Yakubovich-Popov Lemma in a behavioural framework
    Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
    不详
    Syst Control Lett, 5 (283-290):
  • [8] An alternative Kalman-Yakubovich-Popov lemma and some extensions
    Graham, Matthew R.
    de Oliveira, Mauricio C.
    de Callafon, Raymond A.
    AUTOMATICA, 2009, 45 (06) : 1489 - 1496
  • [9] Extension of Kalman-Yakubovich-Popov lemma to descriptor systems
    Camlibel, M. K.
    Frasca, R.
    SYSTEMS & CONTROL LETTERS, 2009, 58 (12) : 795 - 803
  • [10] A Kalman-Yakubovich-Popov Lemma with affine dependence on the frequency
    Graham, M. R.
    de Oliveira, M. C.
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 1086 - 1091