On the exact solutions of the Lipkin-Meshkov-Glick model

被引:12
|
作者
Debergh, N [1 ]
Stancu, F
机构
[1] Univ Liege, Inst Phys B5, B-4000 Liege 1, Belgium
[2] ECT, I-38050 Trent, Italy
来源
关键词
D O I
10.1088/0305-4470/34/15/305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the many-particle Hamiltonian model of Lipkin, Meshkov and Glick in the context of deformed polynomial algebras and show chat its exact solutions can be easily and naturally obtained within this formalism. The Hamiltonian matrix of each j multiplet can be split into two submatrices associated with two distinct irreps of the deformed algebra. Their invariant subspaces correspond to even and odd numbers of particle-hole excitations.
引用
收藏
页码:3265 / 3276
页数:12
相关论文
共 50 条
  • [41] Energy level splitting and parity oscillation in Lipkin-Meshkov-Glick model
    Yu Yi-Xiang
    Song Ning-Fang
    Liu Wu-Ming
    ACTA PHYSICA SINICA, 2018, 67 (18)
  • [42] Spin Squeezing and Quantum Fisher Information in the Lipkin-Meshkov-Glick Model
    Li, Song-Song
    Yi, Hong-Gang
    Chen, Rong-Hua
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (04) : 1175 - 1181
  • [43] INVESTIGATION OF GROUND STATE CORRELATIONS IN AN EXTENDED LIPKIN-MESHKOV-GLICK MODEL
    SCHALOW, G
    YAMAMURA, M
    NUCLEAR PHYSICS A, 1971, A161 (01) : 93 - &
  • [44] Genuine multipartite correlations distribution in the criticality of the Lipkin-Meshkov-Glick model
    Lourenco, Antonio C.
    Calegari, Susane
    Maciel, Thiago O.
    Debarba, Thiago
    Landi, Gabriel T.
    Duzzioni, Eduardo, I
    PHYSICAL REVIEW B, 2020, 101 (05)
  • [45] TDHF DYNAMICS AND PHASE-TRANSITION IN LIPKIN-MESHKOV-GLICK MODEL
    KAN, KK
    LICHTNER, PC
    DWORZECKA, M
    GRIFFIN, JJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (07): : 847 - 848
  • [46] Quantum metrology in Lipkin-Meshkov-Glick critical systems
    Salvatori, Giulio
    Mandarino, Antonio
    Paris, Matteo G. A.
    PHYSICAL REVIEW A, 2014, 90 (02):
  • [47] The Generalized Lipkin-Meshkov-Glick Model and the Modified Algebraic Bethe Ansatz
    Skrypnyk, Taras
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [49] Geometric phase and quantum phase transition in the Lipkin-Meshkov-Glick model
    Cui, H. T.
    Li, K.
    Yi, X. X.
    PHYSICS LETTERS A, 2006, 360 (02) : 243 - 248
  • [50] Spin Squeezing and Quantum Fisher Information in the Lipkin-Meshkov-Glick Model
    Song-Song Li
    Hong-Gang Yi
    Rong-Hua Chen
    International Journal of Theoretical Physics, 2013, 52 : 1175 - 1181