THE 3-D STRUCTURE OF SWIRL-STABILIZED FLAMES IN A LEAN PREMIXED MULTI-NOZZLE CAN COMBUSTOR

被引:0
|
作者
Samarasinghe, Janith [1 ]
Peluso, Stephen J. [1 ]
Quay, Bryan D. [1 ]
Santavicca, Domenic A. [1 ]
机构
[1] Penn State Univ, Turbulent Combust Lab, University Pk, PA 16802 USA
关键词
HEAT RELEASE RATE; INSTABILITIES; DYNAMICS; CONFINEMENT; FLOWS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Flame structure is an important aspect of the combustion process which must be considered in the design of gas turbine combustors as it can have a significant effect on the combustor's static stability (blowoff) and dynamic stability (combustion instability). The relationship between flame structure and flame stability, has been studied extensively in single-nozzle combustors. However, relatively few studies have been conducted in multi-nozzle combustor configurations typical of actual gas turbine combustion systems. In this paper, a chemiluminescence-based tomographic reconstruction technique is used to obtain three-dimensional images of the flame structure in a laboratory-scale five-nozzle can combustor. The images reveal the complex three-dimensional structure of this multi-nozzle flame, as well as, the effects of interacting. swirling flows, flame-flame interactions and flame-wall interactions on flame structure.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection
    LaBry, Zachary A.
    Shanbhogue, Santosh J.
    Speth, Raymond L.
    Ghoniem, Ahmed F.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2011, 33 : 1575 - 1581
  • [22] Experimental investigations and large-eddy simulation of low-swirl combustion in a lean premixed multi-nozzle combustor
    Liu, W. J.
    Ge, B.
    Tian, Y. S.
    Yuan, Y. W.
    Zang, S. S.
    Weng, S. L.
    EXPERIMENTS IN FLUIDS, 2015, 56 (02)
  • [23] Experimental investigations and large-eddy simulation of low-swirl combustion in a lean premixed multi-nozzle combustor
    W. J. Liu
    B. Ge
    Y. S. Tian
    Y. W. Yuan
    S. S. Zang
    S. L. Weng
    Experiments in Fluids, 2015, 56
  • [24] Bifurcation of flame structure in a lean-premixed swirl-stabilized combustor: transition from stable to unstable flame
    Huang, Y
    Yang, V
    COMBUSTION AND FLAME, 2004, 136 (03) : 383 - 389
  • [25] NUMERICAL INVESTIGATION OF A LEAN PREMIXED SWIRL-STABILIZED HYDROGEN COMBUSTOR AND OPERATIONAL CONDITIONS CLOSE TO FLASHBACK
    Mira, D.
    Lehmkuhl, O.
    Stathopoulos, P.
    Tanneberger, T.
    Reichel, T. G.
    Paschereit, C. O.
    Vazquez, M.
    Houzeaux, G.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 4B, 2018,
  • [26] Large-eddy simulation of combustion dynamics of lean-premixed swirl-stabilized combustor
    Huang, Y
    Sung, HG
    Hsieh, SY
    Yang, V
    JOURNAL OF PROPULSION AND POWER, 2003, 19 (05) : 782 - 794
  • [27] FLASHBACK LIMITS OF PREMIXED H2/CH4 FLAMES IN A SWIRL-STABILIZED COMBUSTOR
    Shelil, Nasser
    Griffiths, Anthony
    Bagdanavicius, Audrius
    Syred, Nick
    PROCEEDINGS OF THE ASME TURBO EXPO 2010, VOL 2, PTS A AND B, 2010, : 1247 - 1258
  • [28] EFFECT OF A PREMIXED PILOT FLAME ON THE VELOCITY-FORCED FLAME RESPONSE IN A LEAN-PREMIXED SWIRL-STABILIZED COMBUSTOR
    Li, Jihang
    Peluso, Stephen
    Santavicca, Domenic
    Blust, James
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 4B, 2019,
  • [29] LARGE EDDY SIMULATION OF COMBUSTION INSTABILITY OF LOW-SWIRL FLAMES IN A MULTI-NOZZLE COMBUSTOR
    Liu, Weijie
    Ge, Bing
    Zang, Shusheng
    Li, Mingjia
    Xu, Wenyan
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 4B, 2017,
  • [30] EFFECTS OF REACTING CONDITIONS ON FLOW FIELDS IN A SWIRL STABILIZED LEAN PREMIXED CAN COMBUSTOR
    Park, Suhyeon
    Gadiraju, Siddhartha
    Pandit, Jaideep
    Ekkad, Srinath
    Liberatore, Federico
    Ho, Yin-Hsiang
    Srinivasan, Ram
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 4B, 2018,