High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing

被引:131
|
作者
Cheng, Shaoan [1 ,2 ]
Logan, Bruce E. [2 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Dept Energy Engn, Hangzhou 310027, Peoples R China
[2] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Electrode spacing; Hydrogen; High production rate; Microbial electrolysis cell; POWER-GENERATION; WASTE-WATER; MEMBRANE; BIOHYDROGEN;
D O I
10.1016/j.biortech.2010.10.025
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Practical applications of microbial electrolysis cells (MECs) require high hydrogen production rates and a compact reactor. These goals can be achieved by reducing electrode spacing but high surface area anodes are needed. The brush anode MEC with electrode spacing of 2 cm had a higher hydrogen production rate and energy efficiency than an MEC with a flat cathode and a 1-cm electrode spacing. The maximum hydrogen production rate with a 2 cm electrode spacing was 17.8 m(3)/m(3)d at an applied voltage of E-ap = 1 V. Reducing electrode spacing increased hydrogen production rates at the lower applied voltages, but not at the higher (>0.6 V) applied voltages. These results demonstrate that reducing electrode spacing can increase hydrogen production rate, but that the closest electrode spacing do not necessarily produce the highest possible hydrogen production rates. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3571 / 3574
页数:4
相关论文
共 50 条
  • [41] Hydrogen production in single-chamber microbial electrolysis cell under high applied voltages
    Cui, Wanjun
    Lu, Yaobin
    Zeng, Cuiping
    Yao, Jialiang
    Liu, Guangli
    Luo, Haiping
    Zhang, Renduo
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 780
  • [42] Theoretical and experimental evaluation of the potential-current distribution and the recirculation flow rate effect in the performance of a porous electrode microbial electrolysis cell (MEC)
    Hernandez-Garcia, K. M.
    Cercado, B.
    Rivero, E. P.
    Rivera, F. F.
    FUEL, 2020, 279
  • [43] MICROBIAL ELECTROLYSIS CELL: HYDROGEN PRODUCTION USING MICROBIAL CONSORTIA FROM ROMANIAN WATERS
    Cucu, A.
    Costache, T. A.
    Divona, M.
    Tiliakos, A.
    Stamatin, I.
    Ciocanea, A.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2013, 8 (03) : 1179 - 1190
  • [44] Hydrogen production from crude glycerol in an alkaline microbial electrolysis cell
    Badia-Fabregat, Marina
    Rago, Laura
    Baeza, Juan A.
    Guisasola, Albert
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (32) : 17204 - 17213
  • [45] Hydrogen production in a microbial electrolysis cell fed with a dark fermentation effluent
    Rivera, Isaac
    Buitron, German
    Bakonyi, Peter
    Nemestothy, Nandor
    Belafi-Bako, Katalin
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2015, 45 (11) : 1223 - 1229
  • [46] Hydrogen production and ammonium recovery from urine by a Microbial Electrolysis Cell
    Kuntke, P.
    Sleutels, T. H. J. A.
    Saakes, M.
    Buisman, C. J. N.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (10) : 4771 - 4778
  • [47] Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell
    Call, Douglas F.
    Wagner, Rachel C.
    Logan, Bruce E.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (24) : 7579 - 7587
  • [48] Hydrogen production in a microbial electrolysis cell fed with a dark fermentation effluent
    Isaac Rivera
    Germán Buitrón
    Péter Bakonyi
    Nándor Nemestóthy
    Katalin Bélafi-Bakó
    Journal of Applied Electrochemistry, 2015, 45 : 1223 - 1229
  • [49] Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
    Call, Douglas
    Logan, Bruce E.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (09) : 3401 - 3406
  • [50] Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC)
    Munoz, Leonardo DeSilva
    Erable, Benjamin
    Etcheverry, Luc
    Riess, Julien
    Basseguy, Regine
    Bergel, Alain
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (02) : 183 - 186