The potential of CRISPR-Cas9 prime editing for cardiovascular disease research and therapy

被引:2
|
作者
Bharucha, Nike [1 ,2 ]
Arias, Ariel [1 ,2 ]
Karakikes, Ioannis [1 ,2 ]
机构
[1] Stanford Univ, Sch Med, Dept Cardiothorac Surg, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Cardiovasc Inst, Stanford, CA 94305 USA
关键词
cardiovascular; CRISPR-Cas9; prime editing; therapeutic; CHALLENGES; NUCLEASES; INSIGHTS;
D O I
10.1097/HCO.0000000000000985
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review The ability to edit any genomic sequence has led to a better understanding of gene function and holds promise for the development of therapies for genetic diseases. This review describes prime editing - the latest CRISPR-Cas9 genome editing technology. Prime editing enables precise and accurate genome editing in terminally differentiated, postmitotic cells like cardiomyocytes, paving the way for therapeutic applications for genetic cardiomyopathies. Recent findings Prime editing has been used to precisely insert up to 40 bases, create deletions up to 80 base pairs, and can perform all 12 possible transition and transversion base mutations with lower indels and off-target effects than other genome editing methods. The development of several software tools has simplified the experimental design and led to increased efficiency of the process. Improvements in methods for in-vivo delivery of the prime editing components should enable this technology to be used to edit the genome in patients. Prime editing has the potential to revolutionize the future of biomedical research and transform cardiovascular medicine. Improved understanding of the prime editing process and developments in agent design, efficacy and delivery will benefit scientists and patients and could be an effective way to cure cardiovascular diseases.
引用
收藏
页码:413 / 418
页数:6
相关论文
共 50 条
  • [31] CRISPR-cas9 Gene Editing for Cystic Fibrosis
    Xia, Emily
    MOLECULAR THERAPY, 2019, 27 (04) : 196 - 196
  • [32] CRISPR-Cas9 gene editing and human diseases
    Jinka, Chaitra
    Sainath, Chithirala
    Babu, Shyamaladevi
    Chakravarthi, Chennupati Ashok
    Prasanna, Muppidi Lakshmi
    Krishnan, Madhan
    Sekar, Gayathri
    Chinnaiyan, Mayilvanan
    Kumari, Andugula Swapna
    BIOINFORMATION, 2022, 18 (11) : 1081 - 1086
  • [33] Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    Yuta Nihongaki
    Fuun Kawano
    Takahiro Nakajima
    Moritoshi Sato
    Nature Biotechnology, 2015, 33 : 755 - 760
  • [34] Inducible in vivo genome editing with CRISPR-Cas9
    Lukas E Dow
    Jonathan Fisher
    Kevin P O'Rourke
    Ashlesha Muley
    Edward R Kastenhuber
    Geulah Livshits
    Darjus F Tschaharganeh
    Nicholas D Socci
    Scott W Lowe
    Nature Biotechnology, 2015, 33 : 390 - 394
  • [35] CRISPR-Cas9 gene editing for patients with haemoglobinopathies
    不详
    LANCET HAEMATOLOGY, 2019, 6 (09): : E438 - E438
  • [36] Inducible in vivo genome editing with CRISPR-Cas9
    Dow, Lukas E.
    Fisher, Jonathan
    O'Rourke, Kevin P.
    Muley, Ashlesha
    Kastenhuber, Edward R.
    Livshits, Geulah
    Tschaharganeh, Darjus F.
    Socci, Nicholas D.
    Lowe, Scott W.
    NATURE BIOTECHNOLOGY, 2015, 33 (04) : 390 - U98
  • [37] CRISPR-Cas9 Based Bacteriophage Genome Editing
    Zhang, Xueli
    Zhang, Chaohui
    Liang, Caijiao
    Li, Bizhou
    Meng, Fanmei
    Ai, Yuncan
    MICROBIOLOGY SPECTRUM, 2022, 10 (04):
  • [38] Development and application of CRISPR-Cas9 for genome editing
    Zhang, Feng
    TRANSGENIC RESEARCH, 2014, 23 (05) : 842 - 842
  • [39] A glance at genome editing with CRISPR-Cas9 technology
    Barman, Antara
    Deb, Bornali
    Chakraborty, Supriyo
    CURRENT GENETICS, 2020, 66 (03) : 447 - 462
  • [40] Specificity of CRISPR-Cas9 Editing in Exagamglogene Autotemcel
    Yen, Angela
    Zappala, Zachary
    Fine, Rebecca S.
    Majarian, Timothy D.
    Sripakdeevong, Parin
    Altshuler, David
    NEW ENGLAND JOURNAL OF MEDICINE, 2024, 390 (18): : 1723 - 1725